30550 'RGEHE;IGN

-:-'-"

" i

........

":'-"f) processor
;_“_ 'gle chip N-MOS device with 40 pins.
'“iﬁultlplexed address and data bus.(ADo-AD»).

—_.-l' . .

a—

.--J'“'I'""'

= Tt:works on 5 Volt dc power supply.

.—t_._--
= = - _--

——

~~ * The maximum clock frequency is 3 MHz while

—
=

- ~ minimum frequency 1s 500kHz.

* It provides 74 instructions with 5 different addressing
modes.

30

JEERNTROD &T—IGN-’E“'

IAPTOVIHesH 16 address lines soi it can access 27416 =64K
PYLES rj memory

Uiz generﬂ es 8 bit 1/0 address so it can access 228=256
mrur @rts

— J_E:F ﬁVIdeS 5 hardware interrupts: TRAP, RST 5.5, RST
6.5, RST 7.5,INTR.

ﬁ:‘-‘:a
~ e Jtprovides Acc ,one flag register ,6 general purpose

registers and two special purpose registers(SP,PC).

o It provides serial lines SID ,SOD.So serial peripherals can
be interfaced with 8085 directly.

—

SIEEREINNDIAGRAIV

Feset ot
son ”

INTR

INTA [

AL,
A L!- |

JJ'_"I a

Trap &
BST 7.5
RST65 [] 8
R=T 5.5

AT

HOLD
HLDA
CLE {Ou

Feset in

el e

3085 NﬁE_QQ:IPT{-_GNk'

SOIMENTPON -a_n_ ofigs are :
ADo-AD ; Multiplexed Address and data lines.
As-Aus: Iini-stated higher order address lines.

A m‘Address latch enable is an output signal.It goes
— _,_E _g when operation is started by processor .

g:—a - These are the status signals used to indicate type

~~ of operation.

o Read is active low input signal used to read data
from I/O device or memory.

o Write is an active low output signal used write data
on memory or an I/O device.

SUBERPIN DESCRIPTHONIT

») 4 This an output signal used to check the
Stalbls; of output device.If it is low, pP willl WAILT until
£ JJ rr agh.

[=] TRAF -1t is an Edge triggered highest priority , non
— i ask able interrupt. After TRAP, restart occurs and
e | XECUtIOn starts from address 0024H

= : These are maskable interrupts and
— have low priority than TRAP.

:INTR is a interrupt request signal after
which pJP generates INTA or interrupt acknowledge
signal.

5 READY:

=
e

—

=T
i
—

This is output pin or signal used to indicate
whether 8085 is working in I/O mode(IO/M =1) or
Memorv mode(TO/M =0)

5055200 B@@;PT{@N?‘ —

[=] HOLD 1 W) SHELBNSEnNpLtEsianal s WhHeR IR receivess
rIOHB 5|gnal It completes current machine cycle and

Jror 5 executing next instruction.In response to HOLD uP
Jr‘ﬁ eraties HILDA that is HOLD Acknowledge signal.

EI RES This is input signal.When RESET IN is low
p fiestarts and starts executing from location 0000H.

'ﬂ‘-’ LIRS0 Serial input data is input pin used to accept serial 1
~ bit data .

: These are clock input signals and are connected to
external LC,or RC circuit.These are divide by two so if 6
MHz is connected to XiXz, the operating frequency
becomes 3 MHz.

:Power supply VCC=+ -5Volt& VSS=-GND

R cssess——— Y

| ILEPH h{i'.l

SIELRRCHITECTURE

i . irshruction
mt decoder apd | | Program counter {18}

= I register (8) | [Breg ®)|Ereg (B |
¥] !,! Hieg @ |Lea__®)] |5
Stack pointer {18} -%

k-

=

- machine cycie
(AL 18) ul ﬁdwm%%r
Tening and control [L
CLK &ddress
« GEN Controf Status OMA Reset| | 2U7er &)
I
el = o A, = A
§§ E# ‘Eigi‘ﬁ address bus
o % =

T

il

s

ArEILE ﬂiﬂ@glcaluqm@"

IXCEE MIE L o Ot i 81 bit general pUrpose register.
[Efe " nnected to ALU.

S50 st of the operations are done in Acc.
\GidE - Tt is not available for user

the arithmetic and logical operations are done in
= he temporary register but user can't access it.

-~ 59: Itisa group of 5 flip flops used to know status of
- various operations done.

e The Flag Register along with Accumulator is called
PSW

or Program Status Word.

T .

——

Arithis c‘aﬂgg,'eg|cal-(gﬁt6‘$"'*b

Flzig) |F ’er IS given by:

*::1 X AC | X P X Y

;_f.;ﬂ-ag IS set when result of an operation is negative.
=i Zero flag is set when result of an operation is 0.

— "fAuxmary carry flag is set when there is a carry out of
~ |lower nibble or lower four bits of the operation.

4Carry flag is set when there is carry generated by an
operation.

:Parity flag is set when result contains even number of
1's.
Rest are don't care flip flops.

_:I-—
_—‘ =
— _——

-_-—

—r
—

" -

———,

-»-*-

r.eglste] BUPL =

e

o —— —_—

Tempora_, | L (2 Hihese are not available for
Lser s nf € are loaded! only: when there is an
or)crsju.r, performed.

Ge ieral pu :There are six general purpose
~T€g 3

= hiegiste rs in 8085 namely B,C,D,E,H,L.These are used
':'*' r various data manipulations.

—~Sp :There are two special purpose

e

g

—
—

= reglsters in 8085:

-
=

—=3 :Stack Pointer.
o :Program Counter.

—

reglsts] rﬁ% J"" '

Sl 421 -+ This is a temporary storage memory 16 bit
reefisie 'sf Since there are only 6 general purpose registers,
rnere 51 need to reuse them .

Wn Jever stack is to be used previous values are PUSHED
= :G Astack and then after the program is over these values
_Jﬁ e POPED back.

ro : It is 16 bit register used to point the
location from WhICh the next instruction is to be fetched.

e When a single byte instruction is executed PC is
automatically incremented by 1.

e Upon reset PC contents are set to 0000H and next
instruction is fetched onwards.

—
i —

.
-—uv

NSYRUCTION
SIEEIST R, DECODERIB)

ROL

Instructio‘ :When ani instruction is fetched , it
]J EXEclited I instruction register. This register takes
fle E)c’c de value only.
__.I s.—:r:?‘-.‘—' ' : It decodes the instruction from
st uctlon register and then to control block.

— =il This is the control section of
_- |JP It accepts clock input .

S -‘

—
A ___-__'.-_"_"'_
————y

-

T —
———

INVERRUPTCONTIRO Lowes

deeeptStdifferent INterrtptsHike TRAP
fl\J 5. ,6 5‘,75“ and INTR

RIAL 10 CONTROL
,; 'i?OU

— -‘-" It is used to accept the serial 1 bit data by

~~ using SID and SOD signals and it can be
performed by using SIM & RIM

instructions.

C
=}
>)

e q{%@m

el —

DATA T R A ;‘.;-;,.‘._;.m'-" GROLI B i

'r| 2.

MOV o - (Move data from Rs to Rd).

._r...

B Move the content of register B to C.

After execution

- B=I0H. B=10H.
C=20H. C=10H.

Flags Affected :No flags affected.
Addressing mode: Register.

. -
DATALS N@@:@R@ygg

MOV Rd, M L}zcw datal firom Memory: to Rd).
sXample:
OVICH: | W i}é the content of Memory i.e."Hor L" to C.

After execution

_H C2 L 00,C=30H H=C2,L=00,C=10H.
Flags Affected :No flags affected.
Addressing mode: Indirect.

T —

DATACR Né@‘cf-ﬂiﬂg

e ——

MRS e L (Move Immediate dataltor Register).
Eclnnolek ';Eﬁ;ﬁs.
/l\/ &) "OrJ ove the data 30 H to Register B)

After execution

= I é?ﬂﬁr.,
— --ﬂags Affected :No flags affected.
- Addressmg mode: Immediate.

B=30H

‘u:

DATACLE N&ﬂf&@u .‘

— - "

AR - (Load 16 bit data to/Register pair
liIeEaiate).

Sampler =

XA JI) 20 OH. (Loead Stack pointer with C200H).

-l==r'-.‘ﬂ|-— =

Uicialiy=— After execution

-l—'-'.._—'

~ SP—C800H SP=C200H.

—_—
H—,F‘Tag*s* Affected :No flags affected.
- Addressing mode; Immediate.

T

' ~
SINANTRANSEER-GROURS

'_

SR [[[---(StorerAce data toraddress).
EXCIIID)ES "'3{:*-_ fj‘?.:;-

STA CZDOrLﬂ love the data from Acc to C200H).
Jur)r)o:.an cc the data is 10H.

= Inivall _-:;"‘. - After execution

~ A=10H, C200=20H C200=10H , A=10H

":Flags Affected :No flags affected.
- Addressmg mode: Direct.

“ﬂ'

=
DATASE N%‘RG_@Eg

LHLD addres% oad HL pairwith data from address).
EXCipIES
LrIED) czoor (Move the data from C200 to HL pair).
SUl[9P0 "e J CZOO the data is 20H,30H .
frnrmﬁ After execution
= H=10H,L=20H H=20H,L=30H.

= ~1c-2;20H 00=30H C2=20H,00=30H

'i|

-

FI'ags Affected :No flags affected.
Addressing mode: Direct.

T

' - _ﬂ
BATA ..Z R ‘N ‘GR'@H

s -_"'ﬁ-

— —

i

XCHG (:,mu ge the data; firen
SXGIIIPIES
_rJJElclH\/ After

-|-

pair to DE pair)

- d-r -l=r":::ﬂ|- =

SHED0H) 30 H=40H,L=70H.
=— -' OFIE -70H. D=20H,E=30H.
,F‘Tags’ Affected :No flags affected.

- Addressing mode; Register.

‘u:

DATACLE N&ﬂf&@u .‘

— = m—

IVR:R 1 [e e[== (Move the datal fromi address to Acc)

EErrloles l\J cﬁ

MOVE rrw —from 80H port address to Accumulator.

Jllr)r)O:;"—" c : a at 80H is 39H.
y After

- Flags Affected :No flags affected.
Addressing mode: Direct.

T

' ~
DATAL: N%@_RG_@E

B —— e

OUT 8 bit add - (Move the data from Acc to address)
EXCIII9)ES E$80H

MEVE rrw glr a from Acc to port address 80H.
Jur)r)o:@nc a at Acc is 39H.

=
o
" —

= lnitally _E : After
— execution
—r,A =39H. 80=10H.
-~ A=39H,80=39H.
Flags Affected :No flags affected.

Addressing mode: Direct.

e
i

DATAR N@@ie R@uﬁﬁ

e o— e ——

Sxenple:Wiite arprogram to exchange contents of:
IEINOR/AIC Gatlon DO00H to DOO1H

LDA JODDJ—I Load Acc with data from
JOOQ“’ =
| MO_/-:' E -' | Move the data to B

i

LD LA DO001H Load Acc with data from
i D001
STA 2000H Store Acc data at D000
MOV A,B Move B's data to A

STA 2001H Store data from D000 to

""-la.-....'

APITEN -IQ-QE_’UP

PR AP rEGIStEr content Wit

"Acc and result in A).
e

Example:

ADE) C; (r F‘ E the content of C with A).

POSES '5? Data at C register is 10H.

== After execution

= C- 10H ,A=10H A=20H,C=10H.
Flags Affected :All flags are modified.
Addressing mode: Register

T———

i

J*""’qﬂ
AP TR =€-G£Q§P —

e ——— —— S

ADD M(r\E DIH - Reg content with Acc and result in A).

=X r)Ie
ADID Lgk;g DD the content of HL with A).

_ EL ﬁpﬁse the Data at memory pointed by HL register
| i—)ZOH IS 10H.

_:
o

1=.—--

= ~=~Imt|ally After execution
- . H=10H ,L=20H . H=10H,L=20H.
A=20H,C=10H. A=30H.

Flags Affected :All flags are modified.
Addressing mode: Register Indirect.

T —
———

ARIN Y ETIGIGROUP:

-

2 datarwithr Acc and' result in A).

Xemple:
ADIT 308 A D 3OH with A).

Ir_jjti;i_-ri _’f After execution

E.—-EA i)ﬁ,f A=50H.
_‘ -—:Flags Affected :All flags are modified.
- Addressmg mode: Immediate.

‘

———,

ARITFI) -Icgﬁggup — -

—————

ADC R (F\JJ Ler content withrAcc and' carry and: result
in A .

SREIPIES

'*.-";'.=.

'-1-." o

A\ _)C &= A b the content of C with A with carry).

e

= g)¢ e eiﬁé Data at C register is 10H and carry is 01H.

= 4n14ally - After execution

. C=10H A=10H A=21H,C=10H.
Flags Affected :All flags are modified.
Addressing mode: Register

T
——

AP DLl OUP=-

-

Erngle: Wnte) program to perform 16 bit addition ¢
1234H& 432:
VIV 21 | B=21H
14, -:'.' A=34H
[C43H C=43H
__"_' b DENWA
=D b5 A=34+21H
~ MOVLA L =55H
- MOVAC A=43H
ADC D A=43+12H
MOV H,A H=55H

RST1 STOP.

""-la.-....'

APITEN -IQ-QE_’UP

SUB R (SUbE['Ej: -adi

- R
=EXample:

ercontent

from Acc and result in A).

&) (&), _(__:" v__=fct the content of B from A).

%‘5? Data at B register is 10H .

-

After execution

= B- 10H ,A=20H A=10H,B=10H.
Flags Affected :All flags are modified.
Addressing mode: Register

AR -IQE&,UP

SBB R Uurrr [SLEY

Eesticin A J‘

I— e

ontent from Acc with: borrow and

,((er)]_- .f-:iﬂ-“;-'

5

"mrﬁ

-':'i

Su tract the content of B from A with borrow).

P)
D-—-"'
.- 'lll--_.'_
_—'-|-

===5[] é’ih' Data at B register is 10H and borrow is 01H .

e =
—
i ""I

—
—

—

P—i‘ '

Ii I_y- | After execution

: B«= OFH ,A=20H A=10H,B=0FH.
Flags Affected :All flags are modified.
Addressing mode: Register

-
—
=

T —
———

AN VETIGGROUP:

-
— e ——

SR E | C(SUbtract immediate datal fiom Acc and result in A

o e
- H

_mmf)le _
SULS EE" btract 30H from A).

jg ‘—1_—: ;"_ After execution
~—A=BOH, A=50H.

- Flags Affected :All flags are modified.
Addressing mode: Immediate

APTTHIMEFLC

E cirrole; SUDEra dai
result at 2C e:-

LDA CF’DOrI
MOVAS/A- =
FDA mm" ::

- ,;:_':;é. #Bf‘.-
== “ﬁ-?ZCOOH

1.. __'._
"

= RSTl

—_—

QRIHIVETICGROUP

— ——— e ——

DAD Rp (A dd speC|f|ed reglster palr with HL pair)

mmr)le 3{-.\D D.(Add! the content of E with L and that
of J_ With ' register and result in HL pair)

Slipp hose e content of HL pair is H=20H ,L=40H
== a g_ibE pair is D=30H, E=10H.

STnitially. After execution
— f-u'-TﬂZZOH L=40H H=50H ,L=50H
- D=30H, E=10H D=30H, E=10H
' Flags Affected :Only carry flag is modified.
Addressing mode: Register.

e &

‘-i!‘"'

QRO HIETIC GROUP

DAA (D=cisglzllzlel]

EXCIIPIE: - :~j‘

VAR :_

r\Jf 59l; -j
DAA .

= JE” il "nstruction is used to store result in BCD form.If

= * Jower nibble is greater than 9 ,6 is added while if upper

] [(i Uiz Or

’— - nibble is greater than 9,6 is added to it to get BCD

~ result.
- In|t|aIIy After execution
124+-39=4B 12+39=51 in BCD form.

Flags Affected :All flags are modified.
Addressing mode: Register

e

——
RN VIETIC,GROUP s

I\ R NARcrement register content by 1).

& -
R
=

Ecmoleal "
N E (E; Cre rem ent the content of C by 1).
i 419%” Ijata at C register is 10H.

-—F'.._—'

—
-

After execution

C 40H C=11H.
Flags Affected :All flags are modified except carry flag.
Addressing mode: Register.

""-la.-....'

APITEN -IQ-QE_’UP

DCR R (pisleg=ly __ i register content by 1).
F*

EElrn e

PER C. (Dﬁ ent the content of C by 1).

e
e _,..:-

)ata at C register is 10H.

: | After execution

""'C— 40H C=0FH.
Flags Affected :All flags are modified except carry flag.
Addressing mode: Register.

—_—

QRIHIVETICGROUP

— e — e ——

INX Rp (fr ment register pair content by 1).

=Xl r)IH :

INES) =" rement the content of Stack pointer pair by 1).
[N _§~ c«{Iri’crement the content of BC pair by 1).

= .__u- —

__-_. ,pﬁose ‘the Data at BC register is 1010H and SP is C200H

— i
—

Inltlally After execution
~ BC= 1010H BC=1011H.
SP=C200H SP=C201H.

Flags Affected :No flags are modified.
Addressing mode: Register.

I‘_h.l.'--

ANAR (I ogm v ANDrregister content withr Acc and result
mmr)le

-"-." .—'

ANAE (A {r | the content of C with A).
= Slppo: ef.hé Data at C register is 10H.

T T =

i}

ga“ltg‘:a'_,lly- Z After execution

i —

~ C=10H ,A=10H A=10H,C=10H.
Flags Affected :S,Z,P are modified Cy=reset,AC=set.
Addressing mode:Register.

LOGICAECHe

ANI Data (L ogically A \Diimmediate data with Acc and

ESUIEINIA w*; |

SHENIEL :-.,;.i-
,—\I\JI_ QEE" 10H with A).

—
__‘,_

— Initia 5’ After execution

__ﬁ"-‘l'

—A=f0H A=10H
- Flags Affected :S,Z,P are modified Cy=reset, AC=set.
Addressing mode: Immediate.

I‘_h.l.'--

ORAR (I ogjc} V OR' register’ content with' Acc and' result in
,mmr)lH -

7t he content of C with A).

\(“((

=~ Slippo; ef.ﬁe Data at C register is 17H.

T T =

i}

ga“ltg‘:a'_,lly- Z After execution

i —

~ C=17H ,A=10H A=17H,C=17H.
Flags Affected :S,Z,P are modified Cy=reset,AC=reset.
Addressing mode:Register.

LOGICAEEre

ORI Data (L qu"e y: OR'Immediate data withk Acc and result
[ANA)
Enoles :-.,.-.i

ORI 1 LCJEE R 10H with A).

.I

E——— '__ il

— Initially _-z_*"_- After execution
— A=30H A=30H

— Flag'§ Affected :S,Z,P are modified Cy=reset, AC=set.
Addressing mode: Immediate.

I‘_h.l.'--

XRAR (' ogicallys AORTEGISIEN CONLENT W]) Acc and result
mmr)le

s .—'
P

ARANE (C the content of C with A).
~ SUppoE ef.hé Data at C register is 17H.

T T =

i}

ga“ltg‘:a'_,lly- Z After execution

i —

~ C=17H ,A=10H A=07H,C=17H.
Flags Affected :S,Z,P are modified Cy=reset,AC=reset.
Addressing mode:Register.

| R
ﬁ
LOGICARCHEY S

8|2 N (Compare register content with' Acc and result in
A) = :,:l- ;—1':_-;.

e

ERGII) r)] £l :
C MH | mpare the content of C with A).

.)E pGEe ‘the Data at C register is 17H.

__.__'nll-'

-—-;lmtrcjlly | After execution

~ C=10H ,A=17H A=17H,C=17H.
Flags Affected :5=0,Z=0,P=0, Cy=reset,AC=reset.
Addressing mode:Register.

LOGICAECH®

o2 Q- N(Compareiimmediate dataiwith Ace).

XG9I ES 2
IOrJ (€”‘r pare the content of C with A).

_ = After execution
e A=17H.
_‘-—:Flags Affected :S= 0,Z=0,P=0, Cy=reset,AC=reset.
- Addressing mode:Immediate.

T
—
LOGICA' 0] |

RLC (Rotate accur

Mulator {eit-.)..
__-l' e e
Ly

Example:

VOVAAOSH.

B L

~ (Rotate accumulator left).

= e After execution
~ A=03H A=06H.

Flags Affected :0nly carry flag is affected.
Addressing mode:Implied.

LOGICAL

:?
=EXample:

MOVEA, JJ _ =

HAE 5; d;:: (Rotate accumulator left with carry).
J'ﬁlff, i After execution
"‘A =03H!, carry =01H A=07H.

Flags Affected :Only carry flag is affected.
Addressing mode:Implied.

LOGICE

RRC (Mgt =id
ERCII9IES

lwov,xuw 4

C
L "T-r ' g
‘1!

(Rotate accumulator right).
After execution

- A=03H, A=81H.
Flags Affected :Only carry flag is affected.
Addressing mode:Implied.

T
H —
LOGICA !i C

Write a program 0 reset ast 4 bi

Store result at |
M\/ r\ S2H A=32H
= 00110010 AND
= f ' = —~00110000=30H
 STAC200H, C200=30H

RST1 Stop

T

SEIGRIGROUP. = ﬁ

i : S —

—_———

--- S - — r __,_.—-"-"-— —

JMP address(J conditional jump toraddriess)
EXGIIPIE |
JM|P CZOOJ—I 2

AR LTS __5; mstructlon the Program Counter is loaded with
g 'étafbn and starts executing and the contents of PC
ded on Stack.

= —

—_ - - __-
_' - o
e

— e i
S
- i

._--_- —

= Flagé Affected :No Flags are affected.
Addressing mode:Immediate.

\L_ elclelfass Unconaf onal €

l":):'

Example:
CALL C200H

Aftar s truct|on the Program Counter is loaded with
LIS} Ior*e en and starts executing and the contents of PC
_rerfr ecl on; Stack.

—
i

Hag! Affected :No Flags are affected.
”‘7\ dressmg mode:Immediate

—l

i -
2
BPANCE 'GR%:-' =

Conditional Jur s |
Jr (Jumr) H‘u arry flag Is set)

l—i-\.l-

JZ (J.l __Jf zero flag set)
= & JNZ'(Jump if zero flag is reset)
_ JPE (Jump if parity flag is set)

——
e i

e JPO/(Jump if parity odd or P flag is reset)
- e JP (Jump If sign flag reset)
e JM (Jump if sign flag is set or minus)

T —
5 ANCE 'G'R% yjﬁ

Cond|t|onal Cal

(J” 1r rry ﬂag s set)
{Zarry flag Is reset)
ifizero flag set)
_ -;ﬁ I if-zero flag is reset)
-”ﬁ' DE (CaII if parity flag is set)

——-

—

— 'CPO (Call if parity odd or P flag is reset)
- e CP (CaII i sign flag reset)
e CM (Call if sign flag is set or minus)

- -
ﬁ
SIINGH GROLR s

S RGETfrom subrottine

EREIIIES

MO\/ S

= ,._Ar:ﬁ* It i’s‘fmstructlon the Program Counter POPS PUSHED

j*Qﬁtents from stack and starts executing from that
= '"':atldress

o= Flags Affected :No Flags are affected.
Addressing mode:Register indirect .

=

T —
-—uv
BPANCE 'GRQH&:: =

ERCIIIES
MOM A C
RS 1 :
== --;‘zr:t' = |s Instruction the Program Counter goes to

= —c dress 0008H and starts executing from that address .

H—,F‘Tag*s* Affected :No Flags are affected.
- Addressing mode:Register indirect.

——

;;ﬁ
STINGH GROUP ~ ™

Tre gjrlrlra::“@s off the respective’ RSTF commands are:

Instruct OF '*

| 0000H
= 0008H
== 0010H
— —RST?3 0018H
- |RST 4 0020H
RST 5 0028H
RST 6 0030H

IRQT 7 C0028H |

ST EHSAND MACHINE
CONTHE B~

—— — —— S—

RIS RRIN(EUSHIregISter pailr contents on stack).
EXCIIPIES L/< *“SP FFFFH.
SH H. (Move the content of HL pair on Stack).

Jlupr -at HL pair the data is H= 20H,L.= 30H & SP is
lrJIFJ’:Ji at FFFFH

Iy]!f itiall ally After execution
= :ﬁ-:zOH L=30H H=20H,L=30H.
~ SP=FFFF H

- FFFD=30H,FFFE=20H
Flags Affected :No flags affected.
Addressing mode: Register indirect.

POPARN(PO) register pail contents from: stack).
=X IES HO" :D(POP the content of DE pair from Stack).

Jur)r)o:p at: DE pair the data is H= 20H,L= 30H SP was
Jrnrqu/‘s at FEFEH

B -Ian-r: .-:-f:‘ = After execution
——ZGH E=30H D=10H,E=80H.
 FrFD= 80H,FFFE=10H

- FIags Affected :No flags affected.

Addressing mode: Register indirect

rm@ \[p MAC
SONTROL ™=

YaimIN(Exchange HL register pair contents with top of stack).
SermpleXHL(Exchange top with HL pair).
SUppose at HL pair the data is H= 20H,L= 30H & SP

- |—'|_—-|—" "

— __ F

~ &a thatlons FEFF=10H and at FFFE= 80H.

g —

|
ﬁ

_-: |a1Iy After execution
-~ H=20H,L=30H H=10H,L=80H.
- SP=FFFF =10H,FFFE=80H FFFD=20H,FFFE=30H

Flags Affected :No flags affected.
Addressing mode: Register indirect.

ADDRES: N@MQPE Eﬁ

-:-'-"

Irngrigcizlie :L.l €s5Ing: g

PMEdicte ¢ J“ is transferred to address or register.
=X r)JH =

YV r\)F :‘:Transfer immediate data 20H to accumulator.
_ -l\Llr; o)& —of bytes

"‘" ver 2 or 3 bytes long.

*'J-ist:_b'yte IS opcode.

- 27 byte 8 bit data .

34 pyte higher byte data of 16 bytes.

REGISIEN addressing:
SIS rmru:} " from one register to other.
Eamglel _‘
MIOVEA, Cr ransfer data from C register to accumulator.
I\Lmu' *@f‘ bytes
-re ly: =5 byte [e]g[e]

-—s@ne byte IS opcode.

ADDRES: N@M@E&@Bﬁ

-:-'-"

c' A L

Direct zlelelfess]
ansfierred from direct address to other register

Dzitz] 'yc
OIVIGCERV
=X I)Iﬁ.::
EDANE200 -.Transfer contents from C200H to Acc.
= —-:l\ Lr F o= ﬁf bytes:
- These are 3 bytes long.
"1st byte IS opcode.
- 2" byte lower address.
3 byte higher address.

[ansi
fi5a.

e ———

ADDjESE N@M&B%ﬁjﬁ

Iricliraae chLJ.r’

ORData) s transferred from address pointed by the
rlrrrrr rr a reglster to other register or vice-versa.

_,(,JJ'J'JF; a
Mﬁ IVI Move contents from address pointed by M to
_.:;;-:-* = cc =
= ~=4&umber of bytes:
_F These are 3 bytes long.
15t byte is opcode.
24 pyte lower address.

3 byte higher address.

ADDRESSIN

UppiEaiaadressing:

Triese clgedsk reqmre any operand. The data is specified
if] Or)r*ode Self

EGlf)e r)le*' %A : Rotate left with carry.

= S —

e
-
-

e
-
P OGN 'ﬁ;‘ﬁ

—

el —

WITWENa pro Jrn to transfer a block of data from C550H to
®5plEhls Store the data from C570H to C57FH .
L XL R ,C ”’ H
I B, C570H
IVL\AE:B ?:H

__.-_-

— UPIVIOV'A/ M

~ STAXB.

- INXH

- INXB
DCR D
INZ UP

RST1

AOERAN e, = J’

SifdloUt errors i the following :

VIV B D =Immediate addressing doesn't have register
g5 OPE rand .Therefore, MVI B,80H.

_L\ X L Incriement operator always acts on the higher
emory address in register pair .Thus ,INX H.

. L = P 80H = Conditional jump instructions doesn’t have any
%“"-f - immediate operand .Thus, JP UP.

= If'FIag contents are AB H, what is flag status
- If flag contains AB H then it's values from D7 to Do are
10101011.
By comparing it with flag register we get S=1,7=0,AC=0,
P=0,Cy=1.

pan——— =

- gp— e ——— —

RO o, s

—- . -

1, Wrlele ,Jﬂ—hl: 2 Astructions for the following actions?
Loziel tpleh * anth second and! third byte of instruction.
EXAIH) (”/O-f

PCHL , : Load PC with HL content

=— [mp—«,]_ PC +1=H.
— e Noc change in normal execution except increment the PC.

.—:_,_--

"-NOP “(No operation)

-~ e This instruction has no effect on code only used to cause
delay .

T
——

PROGRAMTT
Writa 2 r)rogrrlrrr-l'@":,c 10 data bytes. Datal IS stored
loczitions C200), St LOTENEST Jlr fJE C”OOrJ
IXIHC200H
FIVIIC) OA HI
RRIVIVIFA, 00" H
MOV *M
i B Ee E

= — .

c_.:R“cfi
-~ NzZup

-~ STAC300H
= - RSTI.

o o1 e

s -_"'ﬁ-

e [P operiat 65 with reference to clock signal.The rise
clplels rmﬂ: ‘the pulse of the clock gives one clock cycle:

ac clo k cycle is called a T state and a collection of

BVElic T states gives a machine cycle.
_.=r-"

' @rtant machine cycles are :

="
,-_

=

.
—
—_—

| "—--"'E' p' Code fetch,

——l'_.._#—-' ——

—

___;-_,;. = Memory read.
@

Memory write.
e [/Op-read.
e /O write.

T

| - . —
TIMING 'ND_%TEQ{AW

#)sReelelchElie It basically requires 4 T states from: T1-Ti
ne £ *pln goes high at first T state always.

r\Jo—r\F ~—are used to fetch OP-code and store the lower
J\/l" ofi Program Counter.

3;5‘ i store the higher byte of the Program Counter
z r:j.m = while I0/M will be low since it is memory related
= —,operatlon

-—l-"'
e

~ s RD will only be low at the Op-code fetching time.

o WR will be at HIGH level since no write operation is
done.

e So=1,S:1=1 for Op-code fetch cycle.

'i.-_—?

e i—

T

- - . p—
TIMING 'ND_%TEQ{AW

aaaaa

yéle- It basically requires 3T states from T:-Ts

r HEIA p|n goes high at first T state always.

r\je AD7 are used to fetch data from memory and store
s ==-a < lower byte of address.

.5.. 3 -".36\8'A15 store the higher byte of the address while IO/M
will-be low since it is memory related operation.

~ RD will only be low at the data fetching time.

e WR will be at HIGH level since no write operation is
done.

e S0=0,S1=1 for Memory read cycle.

r —
- —
——
=

i

m—
—

__—F
B
—

T

- - . —
TIAING 'ND_%TEQ{AW

Mernory wr1 vele: It basically reguires 3T states from Ti-
rJ ¥ = '. #
Trje r\l"' : 'Ein goes high at first T state always.

r\J_)a »are used to fetch data from CPU and store the
Ic WE byte off address.

| ;;; = Ais store the higher byte of the address while
—,IO/M will be low since it is memory related operation.

-_::o ~ RD will be HIGH since no read operation is done.

o WR will be at LOW level only when data fetching is
done.

e So=1,5:=0 for Memory write cycle.

e

T —
Sz JURIIENES ﬁ

Calculation of Jelrl\/ lung ot counrer
Corurler Lr owing example
MVI C, - tlnt(8 bit) H / T states

el

UH Jr jf __' 4 T states
: 10/7 T

10T
—— I:Iere loop UP is executed (N-1) times.
e Thus delay is
Td=M+[(count)x N)-3.
e \Where M= no.of T states outside loop.
N=no.of T states inside loop.

SUBHAL ‘HNM

EIEValue QI‘ N=14.

Trie mrmmw delay WI|| occur If count is 255 or EF H.
INISHId ma: _—17+[255x14] -3= 3584 T states.

FOr 0 ;E ec delay for a T state, we get

QEE x—_O 5 psec x 3584= 1792 usec or 1.792 m sec.

H:—'_FIE-_ ;..-I.—'
- _.I_-_"'_:."__.-_ - ;

m——
s

—

i

' *

f# l MS are used as program memory and RAM as

* _" 1t face Multiple RAMs and EPROMS to single pP .

.|—-.

o
e

i

| ,--IZ femory £ terfacing includes 3 steps :

il - e

E .:-I‘-"

1:'_""
W - _,-'

== _Ct the ch1p

._--_

6. Identlfy register.

7. Enable appropriate buffer.

| “l.l T

T

—_—
waperiaciig

arfeica 21<ovias of Magony to G085 witg
Ires3 30005
2alize that 2K memory requires 11 address

=
el

3’8) . S0 we use Ao-Auo .

—— _—

own - Ais —Aq
| 11 10 9 8 y §) 5 4 3 2 1 0 ADD
AT |
: 0 0 0 0 0 0 0 0 0 0 0 0] S000H

0 1 1 1 1 1 1 1 1 | 1 1 87FFH

——

e

—_—

YEmoenyalnteriae

e
=

- i

—ip— — — - = -

p—— e

AUEIESS lines Ac-Aio are used! to interface memory while
AT A, Ais,Ais,Ais are given to 3:8 Decoder to provide an

oUEgLE Slelp jall used to select the memory chip CS or Chip
Qlem- SULt.

MJJ RS and MEMW are given to RD and WR pins of
-.._;j:l,; ory chip.

= ::ig '_D‘ata lines Do-D7 are given to Do-D7 pins of the memory
= chlp

e In this way memory interfacing can be achieved.

ALE

MEMW

e ery@ttg

e we saw that some address lines are used for
hlle others are for decoding.

S
110
=

r—
4 e
-

lled d absolute decoding.

!4.‘.—--'

"'i
L
-

-

i -

ometlmes don’t requ1res that many address lines. So

= _'..-:l-'

°Thls type of decoding is called linear decoding or partial
decoding.

*In partial decoding wastage of address takes place but it
requires less hardware and cost 1s also less as compared with
absolute one.

«h-

INSDIAGRAV

1 I/O Port B Pins
7 |I/O Port C Pins
- |I/O Data Pins
__EI ' Reset pin
RD Read input
WR Write input
AO0-Al Address pins
CS Chip select
Vce, Gnd +5volt supply

1
2
3
4
5
6
7
8

-

———

8 gisiss=) ()

—_—i b5y
POWER GRTHIE
FLPERLIES A wa
— e
amous e L am— -
ove | | ’
COMTROL 8
L 3
GROUF
A 140
PORT & Fry-PTa
URPER
[C 1] -
BI-DIREC THIMAL DATA BUFS
[T &
oroe o e I >
BUFFER
a-@T
IHTERMAL GROUe
DATa, S

2312561
Figure 1. 82C55A Block Diagram

e &

3255 '@GK%GRAMX"

S e

i

ga—

(=] Daita Bus S\ifierz It is/ani 81 bit datal buffer used to

~

irlielr j e 8255 withi 8085. It is connected to Do-Dy bits
Of G2

Deﬂ /wrlte control logic: It consists of inputs

‘RD* WR ,A0,A1,CS

" -RD WR are used for reading and writing on to 8255

—,and are connected to MEMR ,MEMW of 8085
- respectively.

Ao,A1 are Port select signals used to select the
particular port .

CS is used to select the 8255 device .
It is controlled by the output of the 3:8 decoder used

0C

‘-:

GRAM

.

- -_"'ﬁ-

to be used in 8255.

S Ao Selected port
1o 0 Port A
—E:.-T%"’ | Port B
= .1' - 0 Port C
| | Control Register

e &

3255 '@GK%GRAMX"

i

GIOUIE r)" Group B Control:
Cro)t] P A ’control consists of Port A and Port C

ljr)re -f_

EI C‘ OUP: B control consists of Port A and Port C
= =——] er

_' “Each group is controlled through software.

LThey receive commands from the RD , WR pins
to allow access to bit pattern of 8085.

The bit pattern consists of :
Information about which group is operated.
¢, Information about mode of Operation.

e

ga—

3255.8 '@GK%GRAM#

81 A B:These are bi-directional 8 bit ports each and
e use(' to interface 8255 with CPU or peripherals.

Port A 5 controlled by Group A while Port B'is
co)pji a@iied by Group B Control.

= ‘#& 'T c: This is a bi-directional 8 bit port controlled
-;—- fpartlally by Group A control and partially by Group B

_-r
i

';"‘ : ufcontrol

i
o

e [t is divided into two parts Port C upper and Port C
lower each of a nibble.

e [t is used mainly for control signals and interfacing
with peripherals.

5255 1Ye)p

VsletEN0r: Simple I/0 - - ~——

Arly Of £, 8, CL zigicl il czig) o programmediasinputior
Qljl‘rljl‘-)
VIGEN /0 with Handshake
r\ rmrl can be used for I/O
P wdes the handshake signals
lVJo.c‘ Bl directional with handshake
_____:-.-,. A js b| directional with C providing handshake signals

= B is simple I/O (mode-0) or handshake I/O (mode-1)

—— .—:_,_--

"'J-.'BSR (Bit Set'Reset) Mode
— e Only C is available for bit mode access.
e Allows single bit manipulation for control applications

e

) B
4 e g

i

erfaced in Memory Mapped I/O0 mode.

s
=

g——

G 8085/8.82

= i—

J;I_’Ee downithe addresses and then interface it .

= =

e 10 8 |7 |6 |5 |4 |3 |2 |1 |o |Por
e x| x| X (XX [x |x |x [x |o-fo |a
-|F'-_____.-- y
— |
SNt OED. 10 (X X |X |X [X |xX |x |xX [x o |1 [B
1 GRSl % X X |x |[x [x [x [x [x|1:s%e=]E€
1 D=misFo—=EON | X <X X |X [x [x |x [x |x |t |1 oW

INTER; ‘C*IN.,@'85 &-8?15‘?‘-"

Trius v\e J’:‘ elC dre:::eJ consicleriiie) cloffe celres o) fel Zere)

clS

Dot A\ = ’(OH
Port 5= 001H
_Horr "5'—8002H
E=all ‘—8003H

_t ;!- hen we give Aii,A12,A13 pins to A,B,C inputs of Decoder to
~ enable 8255 or Chip Select.

~ ® Assis logic 1 so it is given to active HIGH G pin& A4 ,10/M
are given to active low G2B ,G2A pins.

e Output from Latch is given as Ao,A: pins to 8255 while Do-
D7 are given as data inputs.

il
1-:-—
=_ "H
=
-—-—

NINERT

b
G2A G2B Gl
—
> B —
—
o = PA
A | /cs
decoder 3:8 8255
> 00 » A0
= 7437301 Ja1 PB
~ | (AD0-ADY)|« »A0-A7
el e 07
S : »| D7-D0 PC
RD™ RD ~
WR™ :l WR ™

INTEREAE

Eclmglesfece cEliepire
result to I)orf“-‘-*‘ PRt

MVANAVEZI ﬂltlallze 8255

OUIF s 13"..:_*

IJF\ 81 E—f’ Tiake data from port B

= Z‘; F‘FHF’ ~ Add FF H to data

rr,DG"' 280H - OUT Result to port A.
=k STOP.

BNITEREACING STEPPER GTION

MGB255

ULN2QD3
Stepper Motor
8255 \lr A
00 =———]00 PAD] >0 16
oW —— WK PRl >0
o — a0 PR O z [m‘l
Al — A oAz 4 >0 13 2 s
Decoding o 5
Circuitry
ULN2003 Connection for Stepper Motor
Pin 8 = GND {use o separate power supply for motor}
Pin 9 = +5V

Figure 4-40. 8255 Connection to Stepper Motor

SERIAEE

Serial Fomrrurnm OflS SYSTErNS 2lre Of Eflras Yo
Simplex: s &a one way communlcatlon
OIIIACHE r... can speak.

giherothe ~|5arty only hears to the first one but cant
forrmr H:I:ate

Vstem A -

_."

System B

unidirectional Receiver

:
-

T

SAECON M-CAGHGJNg

-:-'-"

ek System B

Recelver
/Transm
1tter

_rHa.lf:E:Duplex It 1s a two way communication between two ports
provided that only party can communicate at a time.

*When one party stops transmitting the other starts transmitting.

*The first party now acts as a receiver.

SERIAL -GMMCA

-:-'-"

Receiver
= | /Transm
= OR/AN E)ltter

= F‘@%uplex It is a two way communication between two
ports and both parties can communicate at same time.

—
=

e [hus here efficient communication can be established.

o R S

TRANSIESIENFEE,

RVATEN -

'.?i_)ne character at a

1. It transfers group of
characters at a time.

- Used f r transfer data rates

— _..--r-
-

‘__—_ M

i |

2. Used for transfer data rates
>20KBPS

f’ = S:rart and stop bit for each

—

h aracter which forms a frame.

3. No start and stop bit for
each character.

4. Two Clocks are used for Tx
and Rx

4. Single clock is used for both
Tx and Rx.

IERRUPTS I 60 a-sﬁ

IFLErUIPL isr:s {OCESS Where anlexternal device can get
At of the mICroprocessor.

e prc _ess starts from the I/O device
IHEE ﬁ_écess IS asynchronous.

g
r—
-
———

- = 5
T .

" > C agsﬁlcatlon of-Interrupts

— ’{nterrupts can be classified into two types:
-~ e Maskable Interrupts (Can be delayed or Rejected)

e Non-Maskable Interrupts (Can not be delayed or
Rejected)

T———

i

INTEMRURESHINESUSS S

e ——— —— S

igLEIdiPLS can ., SOl DE CIaSSINed INLo:
\/W‘c (the address of the service routine is
E’\'Nlred)

Ue: (Lyeatoree (the address of the service routine
-2 ‘needs to be supplied externally by the device)

i 'll--___'_

== -anterfupt IS considered to be an emergency signal

-—

= fﬁaaf may be serviced.

~ —The Microprocessor may respond to it as soon
: as possible.

‘

———,

TN TERS PT%;S’Q —

—————

nou

Tz gUgs I;Lc SIS NLERUPL

The INTR ingut

e _H\l R 1nput IS the only non-vectored

REUPL

= INT TR i rs mask-able using the EI/DI instruction
:"»Ealr

_—

== RST 5.5, RST 6.5, RST 7.5 are all automatically
vectored.

e RST 5.5, RST 6.5, and RST 7.5 are all mask-able.

TDAD ic ¥fhe nnlvvs nan-mnaclr-ahla infarriint in thoe

| - . sam"
VIR UPTS N BOB Gt

NGhVect r interrupts:
e ?’Qe recognlzes 8 RESTART instructions: RSTO -
51/ Each of these would send the

: ;@LCQUt"O ined hard-
= Wired mérmon _

= —— RSTI CALL 0008H
= RST2 CALL 0010H
RST3 CALL 0018H

RST4 CALL 0020H

RSTS CALL 0028H

RST6 CALL 0030H

RST7 CALL 0038H

INTERS PT"‘B&I.GRIW#

=— *- RST 6.5 Yes Yes
“ RST 5.5 Yes Yes
INTR YES NO

.
-—uv

SIiY). N:-' STION

RST5.5 Mask

— > RST6.5 Mask }
o o RO 5:Mask

0 - Available
1 - Masked

\4

Mask Set Enable
r 0 - Ignore bits 0-2

, " 1 - Set the masks according
- to bits 0-2

Force RST7.5 Flip Flop to reset

\4

-~ _Not Used <

*SIM Instruction helps activate a particular interrupt.
101
*It can also mask a maskable interrupt.

ENREHUPE MEaSKS SO that
nabled RSHI6.5 IS masked, and

hine the contents of the accumulator.

bit0=0 S o W 000
bit 1 =1 ngy\'wr\com
~ -Enable7.5 bit2 =0 R
e S—_—
= -'Elhmtsettmgthemasks bit 3 = 1 olololol1lol1!o
= Don'’t reset the flip flop bit4=0
- -Bit5is not used bit 5=0
= - Don’t use serial data bit6=0
- Serial data is ignored bit7=0
= ; Enable interrupts including INTR
MVI A, OA ; Prepare the mask to enable RST 7.5, and 5.5, disable 6.5

SIM ; Apply the settings RST masks

—
ANENSTRUGCTION|

0

ey B e

0 - Available
1 - Masked

RST6.5 Mask

RST5.5 Mask }
'. ———— RST7.5 Mask

e :.._ R —‘."‘-"0 'rﬂerrupt Pending ——
;__-'__,_. f_: ~ RST6.5 Interrupt Pending ——
e RST? 5 Interrupt Pending Interrupt Enable
:—_;.J"',-_:E__._t___' Value of the Interrupt Enable
e Flip Flop

=

-

~+Since the 8085 has five interrupt lines, interrupts may occur during an
ISR and remain pending.

*Using the RIM 1nstruction, it is possible to can read the status of the
interrupt lines and find if there are any pending interrupts.

DATS [A4 R CLK 0
== N A GATE O

fleurFer | V| | I QT 0

| counTER
{

1
—_
m
-
=1_|.~
L
=

S| counTer

=

-

T

|~
2 s ———
piEEindependent 16/bit counters.
2 oin) Pt 4H line Package.
Counrm_ J_‘ " 1|ty in Both BCD and Binary modes.
Pe M Hz operating Freguency.

nk ;ﬁéed as a clock generator.

l"

h—l.

J\

T———

| 4 e o B
\ LU

-
-

CONTREEEI IR

-

N ——

BCD

5 B,
R

i e
ey
‘1

L
e

Select counter RL1

RLO Read/Load

| = Counter0 || 0 Counter latching
'- | Counterl || 0 Read/load LSB
F‘“Ii:f;j 0 Counter2 || 1 Read/load MSB
|1 1 ILLEGAL || R/L MSB |+

then LSB.

: Mode 0

o |0 1 Mode 1
éfr:fl 10 Mode 2
== — | I Mode 3
| 0 0 Mode 4

1 0 1 Mode 5

-
P =T £

T
j
CONRNO "W%_‘_ B

el —

BCD =0 Binary counter
BCD =1 BCD counter

Example: _Ug"")3 21S 2l Sefulaire Wele eeniarzli) fyyiin
Lrns period if the dgou freeuEge sl sl
We'use co nter 0'as a square wave generator and

—

rlddrw‘“*e ‘counter 0 =10H and control register =13H.
_/;«é gguency Is IMHz.So time Is 1jsec.

-—F'.._—'

:Gtmt value = Required period /Input period = 1ms/1

__---

.-i‘=
- psec

--—"

e =1000(Decimal).
e Thus we use 8253 as a decimal counter.

T

Py
nEVIAVE.

0)5)) @
e o)

—

Piegram:
VIVITA, 3 ‘/'rl'*? | Initialize counter 0 mode 3
OUT 13H 16 bit count BCD
MVIFA;00 6'@ Load LSB count to counter 0
_ Qt;i-is ;
VI A, 1OH | Load MSB count to counter 0
— -‘OUT 10H.
= Thus, the output will be a square wave.

DATA

L%
BUFFER

MNTERMNAL

2] 41 Ch nRElrBMAT containing 4 indiviata O/P
J']l']‘—‘l,) H -" :
CHu, Crlz, Crls

]5 comea with Intel processors.

JHE mal Jmum frequency is 3 MHz.

fexecut ~s’3 cycles:

-'F"L-:-.—

=+ DMA read
— -‘DMA Wrte:

= e DMA verify:
e [he external device can terminate DMA Operation

. aa - -
TﬁNcgﬂngs-_@Eﬁ

ga—

ROt r g r|or|ty TbaE:Each channel has equal
r)rjorJF
Hrjr //is shifted from one channel to other.

=F "= pr|or|ty mode: Each channel has a fixed priority

nd if | lgher priority channels are busy then smaller
r|or|ty will get to serve.

— —

—— Extended write mode: This mode is used to interface

slower devices to the system.

e [C stop mode:If this bit is set the channel whose
terminal count is reached is disabled.

e Auto reload mode: If this bit is set data is transferred
by channel 2 only.All other channels are not used.

INSTRUCTION SET OF 8085

Instruction Set of 8085

An instruction is a binary pattern designed inside a microprocessor
to perform a specific function.

The entire group of instructions that a microprocessor supports is
called Instruction Set.

8085 has 246 instructions.
Each instruction is represented by an 8-bit binary value.

These 8-bits of binary value is called Op-Code or Instruction Byte.

Classification of Instruction Set

 Data Transfer Instruction
* Arithmetic Instructions

* Logical Instructions

* Branching Instructions

* Control Instructions

Data Transfer Instructions

* These instructions move data between registers, or between
memory and registers.

* These instructions copy data from source to destination.

* While copying, the contents of source are not modified.

Data Transfer Instructions

MOV Rd, Rs Copy from source to destination.
Rd, M
M, Rs

This instruction copies the contents of the source register into the
destination register.

The contents of the source register are not altered.

If one of the operands is a memory location, its location is specified by
the contents of the HL registers.

Example: MOV B, C
MOV B, M

MOV M, C

Data Transfer Instructions

MVI Rd, Data Move immediate 8-bit
M, Data

* The 8-bit data is stored in the destination register or
memory.

¢ If the operand is a memory location, its location is
specified by the contents of the H-L registers.

* Example: MVI A, 57H

* MVI M, 57H

Data Transfer Instructions

LXI Reg. pair, 16-bit Load register pair immediate
data

* This instruction loads 16-bit data in the register pair.

* Example: LXI H, 2034 H

Data Transfer Instructions

LDA 16-bit address Load Accumulator

* The contents of a memory location, specified by a 16-
bit address in the operand, are copied to the
accumulator.

* The contents of the source are not altered.

* Example: LDA 2034H

Data Transfer Instructions

LDAX B/D Register Pair Load accumulator indirect

* The contents of the designated register pair point to a memory
location.

* This instruction copies the contents of that memory location into
the accumulator.

* The contents of either the register pair or the memory location are
not altered.

* Example: LDAX B

Data Transfer Instructions

LHLD 16-bit address Load H-L registers direct

* This instruction copies the contents of memory
location pointed out by 16-bit address into register L.

* It copies the contents of next memory location into
register H.

* Example: LHLD 2040 H

Data Transfer Instructions

STA 16-bit address Store accumulator direct

* The contents of accumulator are copied into the
memory location specified by the operand.

* Example: STA 2500 H

Data Transfer Instructions

STAX Reg. pair Store accumulator indirect

* The contents of accumulator are copied into the
memory location specified by the contents of the
register pair.

* Example: STAX B

Data Transfer Instructions

SHLD 16-bit address Store H-L registers direct

* The contents of register L are stored into memory
location specified by the 16-bit address.

* The contents of register H are stored into the next
memory location.

* Example: SHLD 2550 H

Data Transfer Instructions

XCHG None Exchange H-L with D-E

* The contents of register H are exchanged with the
contents of register D.

* The contents of register L are exchanged with the
contents of register E.

* Example: XCHG

Arithmetic Instructions

* These instructions perform the operations like:
* Addition
e Subtract
* Increment

* Decrement

Addition

* Any 8-bit number, or the contents of register, or the contents of
memory location can be added to the contents of accumulator.

* The result (sum) is stored in the accumulator.
* No two other 8-bit registers can be added directly.

* Example: The contents of register B cannot be added directly to the
contents of register C.

Subtraction

* Any 8-bit number, or the contents of register, or the contents of
memory location can be subtracted from the contents of
accumulator.

* The result is stored in the accumulator.
 Subtraction is performed in 2’s complement form.
* If the result is negative, it is stored in 2’s complement form.

* No two other 8-bit registers can be subtracted directly.

Increment / Decrement

* The 8-bit contents of a register or a memory location can be
incremented or decremented by 1.

* The 16-bit contents of a register pair can be incremented or
decremented by 1.

* Increment or decrement can be performed on any register or a
memory location.

Arithmetic Instructions

ADD R Add register or memory to accumulator
M

* The contents of register or memory are added to the contents of
accumulator.

® The result is stored in accumulator.
* If the operand is memory location, its address is specified by H-L pair.
o All flags are modified to reflect the result of the addition.

* Example: ADD B or ADD M

Arithmetic Instructions

ADC R Add register or memory to accumulator with
M carry

* The contents of register or memory and Carry Flag (CY) are added to the
contents of accumulator.

® The result is stored in accumulator.
* If the operand is memory location, its address is specified by H-L pair.
o All flags are modified to reflect the result of the addition.

* Example: ADCB or ADCM

Arithmetic Instructions

ADI 8-bit data Add immediate to accumulator

e The 8-bit data is added to the contents of accumulator.
® The result is stored in accumulator.

» All flags are modified to reflect the result of the
addition.

* Example: ADI 45 H

Arithmetic Instructions

ACI 8-bit data Add immediate to accumulator with carry

* The 8-bit data and the Carry Flag (CY) are added to the
contents of accumulator.

® The result is stored in accumulator.
o All flags are modified to reflect the result of the addition.

° Example: ACI 45 H

Arithmetic Instructions

DAD Reg. pair Add register pair to H-L pair

* The 16-bit contents of the register pair are added to the
contents of H-L pair.

® The result is stored in H-L pair.
* |f the resultis larger than 16 bits, then CY is set.
* No other flags are changed.

°* Example: DAD B

Arithmetic Instructions

SUB R Subtract register or memory from accumulator
M

* The contents of the register or memory location are subtracted from the
contents of the accumulator.

* The result is stored in accumulator.
* If the operand is memory location, its address is specified by H-L pair.
o All flags are modified to reflect the result of subtraction.

* Example: SUB B or SUB M

Arithmetic Instructions

SBB R Subtract register or memory from accumulator
M with borrow

* The contents of the register or memory location and Borrow Flag (i.e. CY)
are subtracted from the contents of the accumulator.

* The result is stored in accumulator.
* If the operand is memory location, its address is specified by H-L pair.
o All flags are modified to reflect the result of subtraction.

* Example: SBB B or SBB M

Arithmetic Instructions

SUl 8-bit data Subtract immediate from accumulator

® The 8-bit data is subtracted from the contents of the
accumulator.

® The result is stored in accumulator.
o All flags are modified to reflect the result of subtraction.

* Example: SUI 45 H

Arithmetic Instructions

SBI 8-bit data Subtract immediate from accumulator with
borrow

* The 8-bit data and the Borrow Flag (i.e. CY) is subtracted
from the contents of the accumulator.

® The result is stored in accumulator.
o All flags are modified to reflect the result of subtraction.

°* Example: SBI 45 H

Arithmetic Instructions

INR R Increment register or memory by 1
M

* The contents of register or memory location are incremented
by 1.

® The result is stored in the same place.

* |f the operand is a memory location, its address is specified by
the contents of H-L pair.

°* Example: INR B or INR M

Arithmetic Instructions

INX R Increment register pair by 1

* The contents of register pair are incremented by 1.

® The result is stored in the same place.

* Example: INX H

Arithmetic Instructions

DCR R Decrement register or memory by 1
M

* The contents of register or memory location are decremented
by 1.

® The result is stored in the same place.

* |f the operand is a memory location, its address is specified by
the contents of H-L pair.

* Example: DCR B or DCR M

Arithmetic Instructions

DCX R Decrement register pair by 1

* The contents of register pair are decremented by 1.

® The result is stored in the same place.

* Example: DCX H

Logical Instructions

* These instructions perform logical operations on data stored in
registers, memory and status flags.

* The logical operations are:
* AND
* OR

XOR

Rotate

Compare

Complement

AND, OR, XOR

* Any 8-bit data, or the contents of register, or memory location can
logically have

* AND operation
* OR operation

* XOR operation
with the contents of accumulator.

* The result is stored in accumulator.

Rotate

e Each bit in the accumulator can be shifted either left or right to the
next position.

Compare

* Any 8-bit data, or the contents of register, or memory location can be
compares for:

e Equality
e Greater Than
e Less Than

with the contents of accumulator.

* The result is reflected in status flags.

Complement

* The contents of accumulator can be complemented.

* Each Ois replaced by 1 and each 1 is replaced by 0.

Logical Instructions

CMP R Compare register or memory with accumulator
M

* The contents of the operand (register or memory) are
compared with the contents of the accumulator.

* Both contents are preserved .

* The result of the comparison is shown by setting the
flags of the PSW as follows:

Logical Instructions

CMP R Compare register or memory with accumulator
M

* if (A) < (reg/mem): carry flag is set
* if (A) = (reg/mem): zero flag is set
* if (A) > (reg/mem): carry and zero flags are reset.

* Example: CMP B or CMP M

Logical Instructions

CPI 8-bit data Compare immediate with accumulator

* The 8-bit data is compared with the contents of
accumulator.

* The values being compared remain unchanged.

* The result of the comparison is shown by setting the
flags of the PSW as follows:

Logical Instructions

CPI 8-bit data Compare immediate with accumulator

* if (A) < data: carry flag is set

* if (A) = data: zero flag is set

* if (A) > data: carry and zero flags are reset

* Example: CPI 8gH

Logical Instructions

ANA R Logical AND register or memory with
M accumulator

* The contents of the accumulator are logically ANDed with the contents of
register or memory.

® The result is placed in the accumulator.

* If the operand is a memory location, its address is specified by the contents
of H-L pair.

e S, Z, P are modified to reflect the result of the operation.
® CYisreset and AC is set.

°* Example: ANA B or ANA M.

Logical Instructions

ANI 8-bit data Logical AND immediate with accumulator

* The contents of the accumulator are logically ANDed with the
8-bit data.

® The result is placed in the accumulator.
o S, Z, P are modified to reflect the result.
® CYisreset, ACis set.

* Example: ANI 86H.

Logical Instructions

XRA R Exclusive OR register or memory with
M accumulator

The contents of the accumulator are XORed with the contents of the register or memory.
The result is placed in the accumulator.

If the operand is a memory location, its address is specified by the contents of H-L pair.
S, Z, P are modified to reflect the result of the operation.

CY and AC are reset.

Example: XRA B or XRA M.

Logical Instructions

ORA R Logical OR register or memory with
M accumulator

The contents of the accumulator are logically ORed with the contents of the register or
memory.

The result is placed in the accumulator.

If the operand is a memory location, its address is specified by the contents of H-L pair.
S, Z, P are modified to reflect the result.

CY and AC are reset.

Example: ORA B or ORA M.

Logical Instructions

ORI 8-bit data Logical OR immediate with accumulator

* The contents of the accumulator are logically ORed with the 8-
bit data.

® The result is placed in the accumulator.
o S, Z, P are modified to reflect the result.
® CY and AC are reset.

* Example: ORI 86H.

Logical Instructions

XRA R Logical XOR register or memory with
M accumulator

* The contents of the accumulator are XORed with the contents of the
register or memory.

* The result is placed in the accumulator.

* If the operand is a memory location, its address is specified by the
contents of H-L pair.

o S, Z, P are modified to reflect the result of the operation.
® CY and AC are reset.

* Example: XRA B or XRA M.

Logical Instructions

XRI 8-bit data XOR immediate with accumulator

* The contents of the accumulator are XORed with the
8-bit data.

* The result is placed in the accumulator.
e S, 7, P are modified to reflect the result.
* CY and AC are reset.
* Example: XRI 86H.

Logical Instructions

RLC None Rotate accumulator left

* Each binary bit of the accumulator is rotated left by one
position.

* Bit D7 is placed in the position of DO as well as in the Carry
flag.

* CY is modified according to bit D7.
» S, Z, P AC are not affected.
* Example: RLC.

Logical Instructions

RRC None Rotate accumulator right

* Each binary bit of the accumulator is rotated right by one
position.

* Bit DO is placed in the position of D7 as well as in the Carry
flag.

* CY is modified according to bit DO.
» S, Z, P AC are not affected.
* Example: RRC.

Logical Instructions

RAL None Rotate accumulator left through carry

Each binary bit of the accumulator is rotated left by one
position through the Carry flag.

Bit D7 is placed in the Carry flag, and the Carry flag is placed in
the least significant position DO.

CY is modified according to bit D7.
S, Z, P, AC are not affected.
Example: RAL.

Logical Instructions

RAR None Rotate accumulator right through carry

Each binary bit of the accumulator is rotated right by one
position through the Carry flag.

Bit DO is placed in the Carry flag, and the Carry flag is placed in
the most significant position D7.

CY is modified according to bit DO.
S, Z, P, AC are not affected.
Example: RAR.

Logical Instructions

CMA None Complement accumulator

* The contents of the accumulator are complemented.

* No flags are affected.
* Example: CMA.

Logical Instructions

CMC None Complement carry

* The Carry flag is complemented.

* No other flags are affected.
* Example: CMC.

Logical Instructions

STC None Set carry

* The Carry flag is set to 1.
* No other flags are affected.

* Example: STC.

Branching Instructions

* The branching instruction alter the normal sequential flow.

* These instructions alter either unconditionally or conditionally.

Branching Instructions

JMP 16-bit address Jump unconditionally

* The program sequence is transferred to the memory
location specified by the 16-bit address given in the
operand.

* Example: JMP 2034 H.

Branching Instructions

JX 16-bit address Jump conditionally

* The program sequence is transferred to the memory
location specified by the 16-bit address given in the
operand based on the specified flag of the PSW.

* Example: JZ 2034 H.

Jump Conditionally

status Flags

JC Jump if Carry Cy=1
JNC Jump if No Carry CY=0
JP Jump if Positive S=0
JM Jump if Minus S=1
1Z Jump if Zero Z=1
JNZ Jump if No Zero Z=0
JPE Jump if Parity Even P=1

JPO Jump if Parity Odd P=0

Branching Instructions

CALL 16-bit address Call unconditionally

* The program sequence is transferred to the memory
location specified by the 16-bit address given in the
operand.

» Before the transfer, the address of the next instruction after
CALL (the contents of the program counter) is pushed onto
the stack.

* Example: CALL 2034 H.

Branching Instructions

Cx 16-bit address Call conditionally

The program sequence is transferred to the memory
location specified by the 16-bit address given in the
operand based on the specified flag of the PSW.

Before the transfer, the address of the next instruction
after the call (the contents of the program counter) is
pushed onto the stack.

Example: CZ 2034 H.

Call Conditionally

status Flags

CC Call if Carry Cy=1
CNC Call if No Carry CYy=0
CP Call if Positive S=0
CM Call if Minus S=1
CZ Call if Zero Z=1
CNZ Call if No Zero Z=0
CPE Call if Parity Even P=1

CPO Call if Parity Odd P=0

Branching Instructions

RET None Return unconditionally

* The program sequence is transferred from the
subroutine to the calling program.

* The two bytes from the top of the stack are copied into
the program counter, and program execution begins at
the new address.

* Example: RET.

Branching Instructions

Rx None Call conditionally

* The program sequence is transferred from the

subroutine to the calling program based on the
specified flag of the PSW.

* The two bytes from the top of the stack are copied into
the program counter, and program execution begins at
the new address.

* Example: RZ.

Return Conditionally

status Flags

RC Return if Carry Cy=1
RNC Return if No Carry CYy=0
RP Return if Positive S=0
RM Return if Minus S=1
RZ Return if Zero Z=1
RNZ Return if No Zero Z=0
RPE Return if Parity Even P=1

RPO Return if Parity Odd P=0

Branching Instructions

RST 0-7 Restart (Software Interrupts)

* The RST instruction jumps the control to one of eight
memory locations depending upon the number.

* These are used as software instructions in a program to
transfer program execution to one of the eight
locations.

* Example: RST 3.

Restart Address Table

| instructions | _Restart Address

RSTO 0000 H
RST 1 0008 H
RST 2 0010 H
RST 3 0018 H
RST 4 0020 H
RST 5 0028 H
RST 6 0030 H

RST 7 0038 H

Control Instructions

* The control instructions control the operation of microprocessor.

Control Instructions

NOP None No operation

* No operation is performed.

e The instruction is fetched and decoded but no
operation is executed.

* Example: NOP

Control Instructions

HLT None Halt

* The CPU finishes executing the current instruction
and halts any further execution.

* An interrupt or reset is necessary to exit from the halt
state.

* Example: HLT

Control Instructions

DI None Disable interrupt

* The interrupt enable flip-flop is reset and all the
interrupts except the TRAP are disabled.

* No flags are affected.

* Example: DI

Control Instructions

El None Enable interrupt

* The interrupt enable flip-flop is set and all interrupts
are enabled.

* No flags are affected.

* This instruction is necessary to re-enable the
interrupts (except TRAP).

* Example: EI

Control Instructions

RIM None Read Interrupt Mask

* This is a multipurpose instruction used to read the
status of interrupts 7.5, 6.5, 5.5 and read serial data
input bit.

* The instruction loads eight bits in the accumulator
with the following interpretations.

* Example: RIM

RIM Instruction

D, D D; D, Dy D, Dy Dy
SIDjI7 {16 | I5 | IE [7.5]6.5]35.5

I I
Serial input Interrupt
data bit masked 1f
bit =1
Interrupts Interrupt enable
pending 1f <« — flip-flop 1s set

bit = 1 if bit = 1

Control Instructions

SIM None Set Interrupt Mask

* This is a multipurpose instruction and used to
implement the 8085 interrupts 7.5, 6.5, 5.5, and serial
data output.

* The instruction interprets the accumulator contents as
follows.

* Example: SIM

SIM Instruction

D? D'ﬁ th D4 D3 DE l_-)] D{}
SOD | SDE | XXX | R7.5 | MSE | M7.5 | M6.5 | M5.5
1 | | |
k]
Serial output data Reset R7.5 Masks interrupts
if D, = 1 if bits = 1
Serial data enable <« Mask set
1 = Enable enable if <
0 = Disable D, =1

Addressing modes in 8085 microprocessor

(by Garima Rohela)

The way of specifying data to be operated by an instruction is called addressing mode.

Types of addressing modes -
In 8085 microprocessor there are 5 types of addressing modes:

1. Immediate Addressing Mode —
In immediate addressing mode the source operand is always data. If the data is
8-bit, then the instruction will be of 2 bytes, if the data is of 16-bit then the
instruction will be of 3 bytes.

Examples:

MVI B 45 (move the data 45H immediately to register B)

LXI H 3050 (load the H-L pair with the operand 3050H immediately)
JMP address (jump to the operand address immediately)

2. Register Addressing Mode —

In register addressing mode, the data to be operated is available inside the
register(s) and register(s) is(are) operands. Therefore the operation is performed
within various registers of the microprocessor.

Examples:

MOV A, B (move the contents of register B to register A)

ADD B (add contents of registers A and B and store the result in register A)

INR A (increment the contents of register A by one)

3. Direct Addressing Mode —

In direct addressing mode, the data to be operated is available inside a memory

location and that memory location is directly specified as an operand. The operand
is directly available in the instruction itself.

Examples:

LDA 2050 (load the contents of memory location into accumulator A)

LHLD address (load contents of 16-bit memory location into H-L register pair)

IN 35 (read the data from port whose address is 01)

4. Register Indirect Addressing Mode —
IN register indirect addressing mode, the data to be operated is available inside a
memory location and that memory location is indirectly specified b a register pair.
Examples:
MOV A, M (move the contents of the memory location pointed by the H-L pair to
the accumulator)

LDAX B (move contains of B-C register to the accumulator)
LXIH 9570 (load immediate the H-L pair with the address of the location 9570)

. Implied/Implicit Addressing Mode -

In implied/implicit addressing mode the operand is hidden and the data to be
operated is available in the instruction itself.

Examples:

CMA (finds and stores the 1’s complement of the contains of accumultor A in A)
RRC (rotate accumulator A right by one bit)

RLC (rotate accumulator A left by one bit)

Notes on

Interrupts in 8085 microprocessor

(By Garima Rohela, Lecturer-GP Sonipat)

When microprocessor receives any interrupt signal from peripheral(s) which are
requesting its services, it stops its current execution and program control is transferred
to a sub-routine by generating CALL signal and after executing sub-routine by
generating RET signal again program control is transferred to main program from where
it had stopped.

When microprocessor receives interrupt signals, it sends an acknowledgement (INTA)
to the peripheral which is requesting for its service.

Interrupts can be classified into various categories based on different parameters:

1. Hardware and Software Interrupts —

When microprocessors receive interrupt signals through pins (hardware) of
microprocessor, they are known as Hardware Interrupts. There are 5 Hardware
Interrupts in 8085 microprocessor. They are — INTR, RST 7.5, RST 6.5, RST 5.5,
TRAP

Software Interrupts are those which are inserted in between the program which
means these are mnemonics of microprocessor. There are 8 software interrupts in
8085 microprocessor. They are — RST 0, RST 1, RST 2, RST 3, RST 4, RST 5,
RST 6, RST 7.

2. Vectored and Non-Vectored Interrupts —
Vectored Interrupts are those which have fixed vector address (starting address
of sub-routine) and after executing these, program control is transferred to that
address.

Vector Addresses are calculated by the formula 8 * TYPE

TRAP (RST 4.5) 24 H

RST 5.5 2CH

RST 6.5 34H

RST 7.5 3CH

For Software interrupts vector addresses are given by:

RST O 00 H
RST 1 08 H
RST 2 10H
RST 3 18 H
RST 4 20 H
RST 5 28 H
RST 6 30 H
RST 7 38 H

Non-Vectored Interrupts are those in which vector address is not predefined. The
interrupting device gives the address of sub-routine for these interrupts. INTR is
the only non-vectored interrupt in 8085 microprocessor.

3. Maskable and Non-Maskable Interrupts —

Maskable Interrupts are those which can be disabled or ignored by the
microprocessor. These interrupts are either edge-triggered or level-triggered, so
they can be disabled. INTR, RST 7.5, RST 6.5, RST 5.5 are maskable interrupts
in 8085 microprocessor.

Non-Maskable Interrupts are those which cannot be disabled or ignored by
microprocessor. TRAP is a non-maskable interrupt. It consists of both level as well
as edge triggering and is used in critical power failure conditions.

Priority of Interrupts -

When microprocessor receives multiple interrupt requests simultaneously, it will execute

the interrupt service request (ISR) according to the priority of the interrupts.
Highest

TRAP
RST 7.5
RST 6.5

RST 5.5

INTR

Instruction for Interrupts —

1. Enable Interrupt (EI) — The interrupt enable flip-flop is set and all interrupts are
enabled following the execution of next instruction followed by EI. No flags are
affected. After a system reset, the interrupt enable flip-flop is reset, thus disabling
the interrupts. This instruction is necessary to enable the interrupts again (except
TRAP).

2. Disable Interrupt (DI) — This instruction is used to reset the value of enable flip-
flop hence disabling all the interrupts. No flags are affected by this instruction.

3. Set Interrupt Mask (SIM) — It is used to implement the hardware interrupts (RST
7.5, RST 6.5, RST 5.5) by setting various bits to form masks or generate output
data via the Serial Output Data (SOD) line. First the required value is loaded in
accumulator then SIM will take the bit pattern from it.

I
(%3]
[Fa]
A
(]
P
—
[]

SOD SOE X RST7.5| MSE M7.5 M6.5 M5.5
Serial Data
Out
0 - Unmasked
Enable Serial Data 1 - Maked

0 - Ignore Bit 7 <
1-Sendbit7 to

S0OD

Not used «
Mask Set Enable
0 - Ignore bits 0-2
1- Set the masks
according to bits 0-2

Y

A

Reset RST 7.5

4. Read Interrupt Mask (RIM) — This instruction is used to read the status of the hardware
interrupts (RST 7.5, RST 6.5, RST 5.5) by loading into the A register a byte which
defines the condition of the mask bits for the interrupts. It also reads the condition of SID
(Serial Input Data) bit on the microprocessor.

7 6 5 4 3 2 1 0
SID P75 P6.5 P55 IE M7.5 M6.5 M5.5
Serial Data
In
0 - No request 0 - Unmasked
pending 1 - Maked
1 - Interrupt request
pending
Value of Interrupt

Enable flip-flop

Subroutine in 8085

In computers, a subroutine is a sequence of program instructions that perform a specific
task, packaged as a unit. This unit can then be used in programs wherever that
particular task have to be performed. A subroutine is often coded so that it can be
started (called) several times and from several places during one execution of the

program, including from other subroutines, and then branch back (return) to the next
instruction after the call, once the subroutine’s task is done. It is implemented by using
Call and Return instructions. The different types of subroutine instructions are

Unconditional Call instruction —

CALL address is the format for unconditional call instruction. After execution of this
instruction program control is transferred to a sub-routine whose starting address is
specified in the instruction. Value of PC (Program Counter) is transferred to the memory
stack and value of SP (Stack Pointer) is decremented by 2.

Conditional Call instruction —
In these instructions program control is transferred to subroutine and value of PC is
pushed into stack only if condition is satisfied.

CC 16-bit address Call at address if cy (carry flag) = 1
CNC 16-bit address Call at address if cy (carry flag) =0
Cz 16-bit address Call at address if ZF (zero flag) = 1
CNZz 16-bit address Call at address if ZF (zero flag) = 0
CPE 16-bit address Call at address if PF (parity flag) = 1
CPO 16-bit address Call at address if PF (parity flag) = 0
CN 16-bit address Call at address if SF (signed flag) = 1
CP 16-bit address Call at address if SF (signed flag) =0

Unconditional Return instruction —

RET is the instruction used to mark the end of sub-routine. It has no parameter. After
execution of this instruction program control is transferred back to main program from
where it had stopped. Value of PC (Program Counter) is retrieved from the memory
stack and value of SP (Stack Pointer) is incremented by 2.

Conditional Return instruction —

By these instructions program control is transferred back to main program and value of
PC is popped from stack only if condition is satisfied. There is no parameter for return

instruction.

RC

RNC

RZ

RNZ

RPE

RPO

RN

RP

Return from subroutine if cy (carry flag) = 1

Return from subroutine if cy (carry flag) = 0

Return from subroutine if ZF (zero flag) = 1

Return from subroutine if ZF (zero flag) = 0

Return from subroutine if PF (parity flag) = 1

Return from subroutine if PF (parity flag) = 0

Return from subroutine if SF (signed flag) = 1

Return from subroutine if SF (signed flag) = 0

Advantages of Subroutine —

1. Decomposing a complex programming task into simpler steps.
2. Reducing duplicate code within a program.

3. Enabling reuse of code across multiple programs.

4. Improving tractability or makes debugging of a program easy.

MEMORY MAPPING(BY GARIMA ROHELA)

Memory Mapping is a method to expand the memory of
the microprocessor. Microprocessor have a limited amount of memory.
Many-a-times it calls for more memory space. Being limited
IN memory resource, microprocessor needs to be connected to
external memory devices like RAM/ROM/EEPROM.

8085 can access 64kB of external memory. It can be explained as- total number of
address lines in 8085 are 16, therefore it can access 216 = 65535 locations i.e.
64kB.

2”"n=number of memory locations. Where, n = number of address lines
Some of the RAM IC's are given as:
1. 1C 2114 -> 1k x 4bits

2. 1C 6116 -> 2k x 8hits

3. 1C 6264 -> 8k x 8bits

Some of the ROM IC's are given as:
1. IC 2708 -> 1k x 8bits

IC 2716 -> 2k X 8bits

IC 2732 -> 4k X 8bits

IC 2764 -> 8k x 8bits

IC 27128 -> 16k x 8bits

IC 27256 -> 32k x 8bits
IC 2708 -> 64k x 8bits

N o gk~

Spacing | Memory | Mo. of Address lines | used address lines | Unused address lines

OFFFH | kB 10 AD-AS AL0-ALS

OFFFH | b 1 AD-A10 A1L-ALS

OFFFH | 4kB 12 AD-A11 A12-A15

IFFRH | Bk 13 AO-A12 A1F-ALS

JFFFH 16kB 14 AO-A13 Al4-A15

JFFFH | 3B 13 AO-A14 AlS

FFFFH | 64kB | 16 poAls | —

Q. Design a minimum system to interface the following specification:
1. 32kB of RAM using 2 x 16kB RAM IC
2. 32kB of ROM using 2 x 16kB ROM IC

o Therefore the spacing for all the 4 1Cs are same due to same size of memory ie.
3FFFH.

e The number of address lines required by each IC's is 14.

A15A14 A13A12A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 AQ spacing IC details

0O 0 0 0 0O 0O 0OOOOOOOOGO OO OOOOH ROMIC-1
o 0 111 1 1111111111 3FFFH

0 1.0 0 0 0 0O0OO0OOOOOOTGO OO 4000H ROMIC-2
o 1 1 1 1 1 1111111111 7FFFH

1 0 0 0 0 0 0O0OOOOOOGOO OO 800OH RAMIC-3
o0 1 1 1 1 1111111111 BFFFH

0 COO00OH RAMIC-4
1 1 1 1 1111111111 FFFFH

MEMORY MAPPED I/0O AND I/O MAPPED 1/0 (ISOLATED 1/O)
Memory mapped I/O and Isolated 1/O

As a CPU needs to communicate with the various memory and input-output devices
(I/0) as we know data between the processor and these devices flow with the help of
the system bus. There are three ways in which system bus can be allotted to them :

1. Separate set of address, control and data bus to I/O and memory.

2. Have common bus (data and address) for I/O and memory but separate control
lines.
3. Have common bus (data, address, and control) for I/O and memory.
In first case it is simple because both have different set of address space and instruction
but require more buses.

Isolated I/O -Then we have Isolated 1/0O in which we Have common bus(data and
address) for I1/0 and memory but separate read and write control lines for 1/0. So when
CPU decode instruction then if data is for I/O then it places the address on the address
line and set I/O read or write control line on due to which data transfer occurs between
CPU and I/0. As the address space of memory and I/O is isolated and the name is so.
The address for 1/0O here is called ports. Here we have different read-write instruction for

both 1/0 and memory.
Memory Mapped I/O -

In this case every bus in common due to which the same set of instructions work for
memory and I/O. Hence we manipulate 1/0 same as memory and both have same
address space, due to which addressing capability of memory become less because
some part is occupied by the 1/O.

Differences between memory mapped I/O and isolated 1/0O —

Memory and I/O have separate

address space Both have same address space

Due to addition of 1/0
All address can be used by the addressable memory become

memory less for memory

Separate instruction control read

and write operation in 1/0 and Same instructions can control
Memory both I/0 and Memory

In this I/O address are called Normal memory address are for
ports. both

More efficient due to separate

buses Lesser efficient

Larger in size due to more buses Smaller in size

It is complex due to separate
separate logic is used to control Simpler logic is used as /O is

both. also treated as memory only.

8255 (programmable peripheral interface)PPI
(by Garima Rohela)

8255 is a popularly used parallel, programmable input-output
device. It can be used to transfer data under various condition from
simple input-output to interrupt input-output. This is economical,
functional, flexible but is a little complex and general purpose i/o
device that can be used with almost any microprocessor.

8255 PIN DIAGRAM

It has 40 pin architecture and operates in +5v regulated power
supply. It has 24 pins that can be grouped in two 8-bit parallel ports:
A and B called Port A(PA) and Port B(PB) with the remaining eight
known as Port C(PC). Port C can be further divided into groups of
4-bits ports named Cupper(Cu) and Clower(Cl).

8255 Pin Diagram of Microprocessor.

PA3[]1 / 40 []PA,
PA, 2 39| |PA;5
Pa,[]3 38 JPA
PA (|4 37 _1PA,
RD[]5 36 _JWR
cs]s 35 [_JRESET
GND[]7 34[Jp,
AEE‘ 8 33 D,
Ao 321D,
PC;[]10 311Dy
PCg[] 11 8255A 301D,
PCs[]12 291 1Ds
PC4[]13 28 [_1Dg
PCo[]14 27 1o,
PCi[]15 26 [1Voq(+5V)
PC,[}16 2511pB;
PC3[]17 24 []PBg
PBo[]18 23]PBg
PBy[19 2211PB,
PBa[]20 21[_]PB,

https://www.eeeguide.com/wp-content/uploads/2018/08/Pin-Diagram-of-8255-Microprocessor.jpg

Pin Symbols

Function

Dy-D; (Data Bus})

These bi-directional, tri-state data bus lines are connected to the sys-
tem data bus. They are used to transfer data and control word from
microprocessor (8085) to 8255 or to receive data or status word from
8255 to the 8085.

PA-PA, (Port A)

These 8-bit bi-directional I/O pins are used to send data to output
device and to receive data from input device. It functions as an 8-bit
data output latch/buffer, when used in output mode and an 8-bit
data input buffer, when used in input mode.

PB,-PB, (Port B)

These 8-bit bi-directional 1/0 pins are used to send data to output
device and to receive data from input device. It functions as an 8-bit
data, output latch/buffer when used in output mode and an 8-bit
data input buffer, when used in input mode.

These bi-directional, tri-state data bus lines are connected to the sys-
tem data bus. They are used to transfer data and control word from
microprocessor (8085) to 8255 or to receive data or status word from -
8255 to the 8085.

PA,-PA, (Port A)

These 8-bit bi-directional I/O pins are used to send data to output
device and to receive data from input device. It functions as an 8-bit
data output latch/buffer, when used in output mode and an 8-bit
data input buffer, when used in input mode.

PB,-PB, (Port B)

These 8-bit bi-directional 1/O pins are used to send data to output
device and to receive data from input device. It functions as an 8-bit
data, output latch/buffer when used in output mode and an 8-bit
data input buffer, when used in input mode.

RD [WR CS,' Operations

- o o

O =

Input (Read) Operation
Port A to Data Bus
Port B to Data Bus
Port C to Data Bus

S o
sy
o OO

—— o o

-0 = O

Output (Write) Operation
Data Bus to Port A

Data Bus to Port B

Data Bus to Port C

Data Bus to Control Register

bt ek e ek
= < Al = B =]
S O OO

X=X

X
1
X

Disable Function

Data Bus Tri-stated
Illegal Condition
Data Bus Tri-stated

X
0
1

S et D
SO

Port and register select signals summer

8255 Block Diagram:
Fig. shows the internal block diagram of 8255. It consists of data bus buffer, control
logic and Group A and Group B controls.

GROUP GROUP A PA
o A (::"\/;ﬁ D PoRTA K
POWER |— 0V CONTROL (8}
SUPPLIES § — GND « PASPA,
[
\
GROUP A PCy
@ PORT C -
BI-DIRECTIONAL Upper .
DATA BUS (4) PC,-PC,
D.-D
2 °<::"'> DATA |,
- BUS < >
BUFFER 88IT
INTERNAL
DATA BUS Loty PC,
i1 e S:>
@) PC,-PC,
RD —=¢ |
— 0
WR ey GrOUP |, | GROUP B PB
Ag—| —— 8 K PorTB K*
il CONTROL 8
Ai—] LOGIC (8) , PB,PB,
RESET —=
_/\J
e |

Data Bus Buffer:

Block Diagram of 8255

This tri-state bi-directional buffer is used to interface the internal
data bus of 8255 Pin Diagram to the system data bus. Input or
Output instructions executed by the CPU either Read data from, or
Write data into the buffer. Output data from the CPU to the ports or
control register, and input data to the CPU from the ports or status
register are all passed through the buffer.

Control Logic:

The control logic block accepts control bus signals as well as inputs
from the address bus, and issues commands to the individual
group control blocks (Group A control and Group B control). It
iIssues appropriate enabling signals to access the required
data/control words or status word. The input pins for the control
logic section are described here.

Group A and Group B Controls:

Each of the Group A and Group B control blocks receives control
words from the CPU and issues appropriate commands to the ports
associated with it. The Group A control block controls Port A and
PC7-PC4 while the Group B control block controls Port B and PCs-
PCo.

Port A :

This has an 8-bit latched and buffered output and an 8-bit input
latch. It can be programmed in three modes: mode 0, mode 1 and
mode 2.

Port B :
This has an 8-bit data I/O latch/ buffer and an 8-bit data input buffer.
It can be programmed in mode 0 and mode 1.

Port C:

This has one 8-bit unlatched input buffer and an 8-bit output
latch/buffer. Port C can be splitted into two parts and each can be
used as control signals for ports A and B in the handshake mode.
It can be programmed for bit set/reset operation.

Modes of Operation of 8255 Microprocessor:
It works in two modes:

1. Bit set reset (BSR) mode
2. Input/output (I1/0) mode

Bit Set-Reset (BSR) Mode:

The individual bits of Port C can be set or reset by sending out a
single OUT instruction to the control register. When Port C is used
for control/status operation, this feature can be used to set or reset
individual bits.

I/O Modes:
Mode 0: Simple input/output:

In this mode, ports A and B are used as two simple 8-bit I/O ports
and Port C as two 4-bit ports. Each port (or half — port, in case of
C) can be programmed to function as simply an input port or an
output port. The input/output features in Mode 0 are as follows:

1. Outputs are latched.

2. 2. Inputs are buffered, not latched.

3. Ports do not have handshake or interrupt capability.
Mode 1: Input/Output with handshake:

In this mode, input or output data transfer is controlled by
handshaking signals. Handshaking signals are used to transfer
data between devices. whose data transfer speeds are not same.
For example, computer can send data .to the printer with large
speed but printer can’t accept data and print data with this rate. So
computer has to send data with the speed with which printer can
accept. This type of data transfer is achieved by using handshaking
signals along-with data signals. Fig. shows data transfer between
computer and printer using handshaking signals.

[Data Bus :

ST8

Computer Printer
ACK

BUSY

Data transfer between computer and printer using handshake signals

These handshaking signals are used to tell computer whether
printer is ready to accept the data or not. If printer is ready to accept
the data then after sending data on data bus, computer uses
another handshaking signal (STB) to tell printer that valid data is
available on the data bus.

The 8255 Pin Diagram mode 1 which supports handshaking has
following features.

1. Two ports (A and B) function as 8-bit I/O ports. They, can be
configured either as input or output ports.

2. Each port uses three lines from Port C as handshake
signals. The remaining two lines of. Port C can be used for
simple I/O functions.

3. Input and output data are latched.
4. Interrupt logic is supported.
5. Mode 2 : Bi-directional I/O data transfer:

This mode allows bi-directional data transfer (transmission and
reception) over a single 8-bit data bus using handshaking signals.
This feature is available only in Group A with Port A as the 8-bit
bidirectional data bus; and PCs — PC7 are used for handshaking
purpose. In this mode, both inputs and outputs are latched. Due to
use of a single 8-bit data bus for bi-directional data transfer, the
data sent out by the CPU through Port A appears on the bus
connecting it to the peripheral, only when the peripheral requests
it. The remaining lines of Port C i.e. PCo-PC: can be used for simple
I/O functions. The Port B can be programmed in mode 0 or in mode
1. When Port B is programmed in mode 1, PCo-PC: lines of Port C
are used as handshaking signals.

Control Word Formats:

A high on the RESET pin causes all 24 lines of the three 8-bit ports
to be in the input mode. All flip-flops are cleared and the interrupts
are reset. This condition is maintained even after the RESET goes
low. The ports of the 8255 Pin Diagram can then be programmed

for any other mode by writing a single control word into the control
register, when required.

For Bit Set/Reset Mode:

0 |Dg | Dg [Dy | D3 | Dy | Dy | Dy

. I | L_- BIT SET/RESET
D N8, 8- REser
Don't care
BIT SELECT
o{1|2|3{ai56{7
of1{o|1|ol1{0]1]8g
olo{1[1]olol1i1]8
ololofof1]1]1]1]8,
BIT SET/RESET FLAG
0= ACTIVE

Fig. 14.4 Bit set/reset control word format

The eight possible combinations of the states of bits Ds—
D:1 (B2 B1Bo)in the Bit Set-Reset format (BSR) determine
particular bit in PCo — PC7 being set or reset as per the status of bit
Do. A BSR word is to be written for each bit that is to be set or reset.
For example, if bit PCzis to be set and bit PC4 is to be reset, the
appropriate BSR words that will have to be loaded into the control
register will be, 0OXXX0111 and 0XXX1000, respectively, where x
is don’t care.

The BSR word can also be used for enabling or disabling interrupt
signals generated by Port C when the 8255 Pin Diagram is
programmed for Mode 1 or 2 operation. This is done by setting or
resetting the associated bits of the interrupts. This is described in
detail in next section.

For 1/0 Mode:

The control words for both, mode definition and Bit Set —

Reset are loaded into the same control register, with bit D7 used
for specifying whether the word loaded into the control register is

http://www.circuitstoday.com/

a mode definition word or Bit Set-Reset word. If D7 is high, the
word is taken as a mode definition word, and if it is low, it is taken
as a Bit Set-Reset word. The appropriate bits are set or reset
depending on the type of operation desired, and loaded into the
control register.

1+ |0 [Ds | Dy [Dy [D, | Dy [Dg

LJ ‘GROUP B

PORT C (LOWER) |
1=INPUT
0= OUTPUT

PORT B
1=INPUT
0=0UTPUT

. IMODE SELECTION
0=MODE 0
1 = MODE 1

GROUP A

PORT C (UPPER)
1= INPUT
0= CUTPUT

PORT A
1=INPUT
0= OUTPUT

MODE SELECTION
00 =MODE 0

01 = MODE 1

1X = MODE 2

MODE SET FLAG
1=ACTIVE

Fig. 14.5 8255 mode definition format

https://www.eeeguide.com/wp-content/uploads/2018/08/Pin-Diagram-of-8255-Microprocessor-3.jpg
https://www.eeeguide.com/wp-content/uploads/2018/08/Pin-Diagram-of-8255-Microprocessor-3.jpg

DMA CONTROLLER 8237/8257
(by Garima Rohela)

Introduction of 8237

Direct Memory Access (DMA) is a method of allowing data to be
moved from one location to another in a computer without
intervention from the central processor (CPU).

. lItis also a fast way of transferring data within (and
sometimes between) computer.

. The DMA I/0 technique provides direct access to the
memory while the microprocessor is temporarily disabled.

. The DMA controller temporarily borrows the address bus,
data bus and control bus from the microprocessor and
transfers the data directly from the external devices to a
series of memory locations (and vice versa).

Basic DMA Operation:

. Two control signals are used to request and acknowledge a
direct memory access (DMA) transfer in the microprocessor-
based system.

1. The HOLD signal as an input (to the processor) is used
to request a DMA action.

2. The HLDA signal as an output that acknowledges the
DMA action.

. When the processor recognizes the hold, it stops its
execution and enters hold cycles.

HOLD input has higher priority than INTR or NMI.

The only microprocessor pin that has a higher priority than a
HOLD is the RESET pin.

HLDA becomes active to indicate that the processor has
placed its buses at high-impedance state.

Basic DMA Definitions

Direct memory accesses normally occur between an 1/0O
device and memory without the use of the microprocessor.
1. A DMA read transfers data from the memory
to the 1/0O device.
2. A DMA write transfers data from an I/O device
to memory.
The system contains separate memory and 1/O control
signals.
Hence the Memory & the I/O are controlled simultaneously
The DMA controller provides memory with its address, and
the controller signal selects the 1/O device during the
transfer.
Data transfer speed is determined by speed of the memory
device or a DMA controller.
In many cases, the DMA controller slows the speed of the
system when transfers occur.
The serial PCI (Peripheral Component Interface) Express bus
transfers data at rates exceeding DMA transfers.
This in modern systems has made DMA is less important.

CPU having the control over the bus

When DMA operates

ADO- '

ADI15

ALE l

CPU

HLDA
= HOLD

HOLD

HLDA

ADDR

| LaTcH

Data bus

Control Bus
10R,/ W, MEMR,/W

Qe

HRECQ

DMA
Controller

=

T

The 8237 DMA Controller

. The 8237 supplies memory & 1/0 with control signals and
memory address information during the DMA transfer.
. Itis actually a special-purpose microprocessor whose job is

|OR/W,
MEMR/W

DREC

DACK

addr
bus

data
bus

control
bus

Memory

data
bus

control
bus

Peripheral
Device

|

high-speed data transfer between memory and 1/0

e 8237 is not a discrete component in modern microprocessor-based

systems.

e It appears within many system controller chip sets

e 8237 is a four-channel device compatible with 8086/8088,

adequate for small systems.
e Expandable to any number of DMA channel inputs

e 8237 is capable of DMA transfers at rates up to 1.6MB per second.

e Each channel is capable of addressing a full 64K-byte section of

memory.

Block Diagram of 8237

EOP <+—pQ

DECREMENTOR

INC/DECREMENTOR

RESET TEMP WORD TEMP ADDRESS BUFFER
s ——aQ COUNT REG (16) REG (16) | I
READY —| | 1sBrTBUS l
CLK —* 1ninNe
- e | 16-BIT BUS | I
AEN +—— AND - - _ pe—
ADSTB < CONTROL READ BUFFER READ WRITE BUFFER LA U EY >
MEMR +—Q BASE BASE CURRENT | CURRENT
MEMW +—d ADDREss | WORD ApDREss | WORD]
— | COUNT 16 COUNT | |
IOR +—»Q ae) (16) 16) (16) < [
—_— x®
I0W +—»Q | - COMMAND
+ 1 CONTROL
WRITE READ
BUFFER | | BUFFER Do-D1
DREQD K U
DREQV- £ [PRIORITY COMMAND
DREQ3 ENCODER [* 8 — AV - 10
! (8) . INTERNAL DATA BUS m——
HLDA —»| anD
J— ROTATING MASK 1 r
HRQ =" pRIORITY 0 II
DACKO- | % LOGIC
DACK3 7 | REQUEST STATUS TEMPORARY
(&) MODE) (8)
(4x6)

8237 Internal Registers

CAR

. The current address register holds a 16-bit memory
address used for the DMA transfer.

. each channel has its own current address
register for this purpose.

. When a byte of data is transferred during a DMA operation,
CAR is either incremented

or decremented. depending on how it is programmed

CWCR

The current word count register programs a channel for the
number of bytes to transferred during a DMA action.

CR

The command register programs the operation of the 8237
DMA controller.
The register uses bit position 0 to select the memory-to-
memory DMA transfer mode.
1. Memory-to-memory DMA transfers use DMA channel
2. DMA channel 0 to hold the source address
3. DMA channel 1 holds the destination address

7 6 5 4 3 2 1 0«<—BitNumber
) A O 6 O Y

Memory-to memory disable
Memory-to-memory enable

Channel 0 address hold disable
Channel 0 address hold enable
Ifbit0=0

Controller enable

Controller disable

Normal timing

0

1

0

1

X

0

1

0

1 Compressed timing
X Ifbit0=1
0
1
0
1
X
0
1
0
1

Fixed priority

Rotating priority

Late write selection
Extended write selection
Ifbit3=1

DREQ sense active high
DREQ sense active low

DACK sense active low
DACK sense active high

BA and BWC

The base address (BA) and base word count (BWQ)
registers are used when auto-initialization is selected for a
channel.

In auto-initialization mode, these registers are used to reload
the CAR and CWCR after the DMA action is completed.

MR

The mode register programs the mode of operation for a
channel.
Each channel has its own mode register as selected by bit
positions 1 and 0.
1. Remaining bits of the mode register select operation,
auto-initialization, increment/decrement, and mode for
the channel

7 6 5 4 3 2 1 0<«—Bit Number
[TT1T1T1]

[00 Channel 0 select
01 Channel 1 select
10 Channel 2 select
| 11 Channel 3 select

[00 Verify transfer

01 Write transfer

10 Read transfer

11 lllegal

XX If bits6and 7 = 11

" 0 Autoinitialization disable
. 1 Autoinitialization enable

[0 Address increment select
| 1 Address decrement select

[00 Demand mode select
01 Single mode select
10 Block mode select

| 11 Cascade mode select

BR

. The bus request register is used to request
a DMA transfer via software.

1. very useful in memory-to-memory transfers,

where an external signal is not available to begin
the DMA transfer

7 6 5 4 3 2 1 0<«<—Bit Number

Don't Care (00 Select channel 0
01 Select channel 1
10 Select channel 2
| 11 Select channel 3

" 0 Reset request bit
| 1 Set request bit

MRSR

. The mask register set/reset sets or clears the channel

mask.

1. if the mask is set, the channel is disabled
2. the RESET signal sets all channel masks
to disable them

7 6 5 4 3 2 1 0<«<—Bit Number

Don't Care

MSR

(00 Select channel 0 mask bit
01 Select channel 1 mask bit

10 Select channel 2 mask bit
| 11 Select channel 3 mask bit

[0 Clear mask bit

| 1 Set mask bit

. The mask register clears or sets all of

the masks with one command instead of individual channels,

as with the MRSR.

/7 6 5 4 3 2 1

0 <«<—Bit Number

1
Don't Care

SR

L' 0 Clear channel 0 mask bit
|1 Set channel 0 mask bit

[0 Clear channel 1 mask bit

1 Set channel 1 mask bit

" 0 Clear channel 2 mask bit

| 1 Set channel 2 mask bit

" 0 Clear channel 3 mask bit

| 1 Set channel 3 mask bit

. The status register shows status of each DMA channel.
The TC bits indicate if the channel has reached its terminal
count (transferred all its bytes).

« When the terminal count is reached, the DMA transfer is
terminated for most modes
of operation.

. The request bits indicate whether the DREQ input for a given
channel is active.

76 5 4 3 2 1 0<«<—Bit Number

Channel 0 has reached TC
Channel 1 has reached TC
Channel 2 has reached TC
Channel 3 has reached TC

—r — —r —

Channel 0 request
Channel 1 request
Channel 2 request
Channel 3 request

—r et — —

8237 Software Commands

Master clear

Acts exactly the same as the RESET signal to the 8237. As
with the RESET signal, this command disables all channels

Clear mask register

Enables all four DMA channels.

Clear the first/last flip-flop

Clears the first/last (F/L) flip-flop within 8237. The F/L flip-
flop selects which byte (low or high order) is read/written in
the current address and current count registers. if F/L = 0,
the low-order byte is selected if F/L = 1, the high-order byte
is selected Any read or write to the address or count register
automatically toggles the F/L flip-flop.

Pin Diagram and Pin description of 8237

I0W
MEMR
NC
READY
HLDA
ADSTB
AEN
HRQ
CS
CLK
RESET
DACK2
DACK3
DREQ3
DREQ2
DREQ1
DREQ0
(GND) V'S§

VCC: POWER: a5V supply

Voo
DB
DE1
DB2
DB3
DBE4
DACKO
DACKI
DES
DEG
DE7

VSS: GROUND: Ground.

CLK Input: CLOCK INPUT : Clock Input controls the internal
operations of the 8237A and its rate of data transfers. The input
may be driven at up to 5 MHz for the 8237A-5.

CS Input:

CHIP SELECT: Chip Select is an active low input used to select the
8237A as an |/O device during the Idle cycle. This allows CPU
communication on the data bus.

RESET Input:

RESET: Reset is an active high input which clears the Command,
Status, Request and Temporary registers. It also clears the first/
last flip/flop and sets the Mask register. Following a Reset the
device is in the Idle cycle.

READY Input:

READY: Ready is an input used to extend the memory read and
write pulses from the 8237A to accommodate slow memories or
I/O peripheral devices. Ready must not make transitions during its
specified setup/hold time.

HLDA Input:

HOLD ACKNOWLEDGE: The active high Hold Acknowledge from
the CPU indicates that it has relinquished control of the system
busses.

DREQO +DREQ3 Input:

DMA REQUEST: The DMA Request lines are individual
asynchronous channel request inputs used by peripheral circuits
to obtain DMA service. In fixed Priority, DREQO has the highest
priority and DREQ3 has the lowest priority. A request is generated
by activating the DREQ line of a channel. DACK will acknowledge
the recognition of DREQ signal. Polarity of DREQ is
programmable. Reset initializes these lines to active high. DREQ
must be maintained until the corresponding DACK goes active.

DBO +DB7:

DATA BUS: The Data Bus lines are bidirectional three-state signals
connected to the system data bus. The outputs are enabled in the
Program condition during the 1/O Read to output the contents of
an Address register, a Status register, the Temporary register or a
Word Count register to the CPU. The outputs are disabled and the
inputs are read during an I/O Write cycle when the CPU is
programming the 8237A control registers. During DMA cycles the
most significant 8 bits of the address are output onto the data bus
to be strobed into an external latch by ADSTB. In memory-to-
memory operations, data from the memory comes into the 8237A
on the data bus during the read-from-memory transfer. In the

write-to-memory transfer, the data bus outputs place the data
into the new memory location.

IOR Input/Output:

I/O READ: I/O Read is a bidirectional active low three-state line. In
the Idle cycle, it is an input control signal used by the CPU to read
the control registers. In the Active cycle, it is an output control
signal used by the 8237A to access data from a peripheral during
a DMA Write transfer.

IOW Input/Output:

I/O WRITE: I/O Write is a bidirectional active low three-state line.
In the Idle cycle, it is an input control signal used by the CPU to
load information into the 8237A. In the Active cycle, it is an output
control signal used by the 8237A to load data to the peripheral
during a DMA Read transfer.

EOP Input/Output:

END OF PROCESS: End of Process is an active low bidirectional
signal. Information concerning the completion of DMA services is
available at the bidirectional EOP pin. The 8237A allows an
external signal to terminate an active DMA service. This is
accomplished by pulling the EOP input low with an external EOP
signal. The 8237A also generates a pulse when the terminal count
(TC) for any channel is reached. This generates an EOP signal

which is output through the EOP line. The reception of EOP, either
internal or external, will cause the 8237A to terminate the service,
reset the request, and, if Auto initialize is enabled, to write the
base registers to the current registers of that channel. The mask
bit and TC bit in the status word will be set for the currently active
channel by EOP unless the channel is programmed for Auto
initialize. In that case, the mask bit remains unchanged. During
memory-to-memory transfers, EOP will be output when the TC for
channel 1 occurs. EOP should be tied high with a pull-up resistor if
it is not used to prevent erroneous end of process inputs.

AO A3 Input/Output:

ADDRESS: The four least significant address lines are bidirectional
three-state signals. In the Idle cycle they are inputs and are used
by the CPU to address the register to be loaded or read. In the
Active cycle they are outputs and provide the lower 4 bits of the
output address.

A4 A7 Output:

ADDRESS: The four most significant address lines are three-state
outputs and provide 4 bits of address. These lines are enabled
only during the DMA service.

HRQ Output:

HOLD REQUEST: This is the Hold Request to the CPU and is used

to request control of the system bus. If the corresponding mask

bit is clear, the presence of any valid DREQ causes 8237A to issue
the HRQ.

DACKO +DACKS3 Output:

DMA ACKNOWLEDGE: DMA Acknowledge is used to notify the
individual peripherals when one has been granted a DMA cycle.
The sense of these lines is programmable. Reset initializes them to
active low.

AEN Output:

ADDRESS ENABLE: Address Enable enables the 8-bit latch
containing the upper 8 address bits onto the system address bus.
AEN can also be used to disable other system bus drivers during
DMA transfers. AEN is active HIGH.

ADSTB Output:

ADDRESS STROBE: The active high, Address Strobe is used to
strobe the upper address byte into an external latch.

MEMR Output

MEMORY READ: The Memory Read signal is an active low three-
state output used to access data from the selected memory

location during a DMA Read or a memory-to-memory transfer.

MEMW Output:

MEMORY WRITE: The Memory Write is an active low three-state
output used to write data to the selected memory location during
a DMA Write or a memory-to-memory transfer.

PINS5S Input:

PINS5: This pin should always be at a logic HIGH level. An internal
pull-up resistor will establish a logic high when the pin is left
floating. It is recommended however, that PIN5 be connected to
VCC

DATA TRANSFER TECHNIQUES
(by Garima Rohela)

Data transfer schemes of 8085 microprocessor

In 8085 microprocessor based systems several input and output devices are connected.
We know that data transfer may take place between microprocessor and memory,
microprocessor and I/O devices and memory & I/O devices. As we know not much of the
problems arise for the data communication between microprocessor and memory as
same technology is used in the manufacturing of memory and microprocessor.

The main reason for that the speed of the memory is almost compatible with the speed
of 8085 microprocessor. Now the main concern is for the data transfer between the
microprocessor and I/O devices. The main problems arise due to mismatch of the speed
of the 1/0O devices and the speed of microprocessor or memory. To overcome this problem
of speed mismatch between the microprocessor and 1/0O devices we have to do
something. For that reason only we introduce data transfer schemes of 8085
microprocessor. So following data transfer schemes may be considered for smooth data
transfer process. The data transfer schemes of 8085 microprocessor were categorised
depending upon the capabilities of 1/0 devices for accepting serial or parallel data.

|

PARALLEL DATA SERIAL DATA

DATA TRANSFER SCHEME

PROGRAMMED 110 INTERRUPT DRIVEN 110 b nEet MEMORY

I ACCESS
SYNCHROMOUS SINGLE INTERRUPT MULTIINTERRUPT

ASYHCHRONOU'S LIKE LINE

The 8085 microprocessor is a parallel device. That means it
transfers eight bits of data simultaneously over eight data lines
(parallel I/O mode). However in many situations, the parallel I/0
mode is either impractical or impossible. For example, parallel
data communication over a long distance becomes very

expensive. Similarly, parallel data communication is not possible
with devices such as CRT terminal or Cassette tape etc.

Serial /0 mode transfer

For these devices and for these reasons serial /0O mode is used.
In serial I/O mode transfer a single bit of data on a single line at a
time. For serial 1/0 data transmission mode, 8-bit parallel word is
converted to a stream of eight serial bit using parallel-to-serial
converter. Similarly, in serial reception of data, the microprocessor
receives a stream of 8-bit one by one which are then converted to
8- bit parallel word using serial-to-parallel converter. For this
purpose data transfer schemes of 8085 microprocessor are
introduced.

Parallel data transfer scheme

Parallel data transfer scheme is faster than serial 1/0O transfer. in
parallel data transfer 8-bit data send all together with 8 parallel
wire. In 8085 microprocessor mainly three types of parallel data
transfer scheme we observed. Those are

Programmed 1/O Data Transfer
Interrupt Driven 1/O Data Transfer
Direct Memory Access (DMA) Data Transfer

Programmed I/O Data Transfer scheme of 8085 microprocessor

Programmed I/O Data Transfer scheme of 8085 microprocessor
is a simple parallel data transfer scheme. This method of data
transfer is generally used in the simple microprocessor systems. It
IS obvious that where speed is unimportant. This method uses
instructions to get the data into or out of the microprocessor.
Programmed I/O Data Transfer scheme of 8085 microprocessor
can be work on synchronous or asynchronous mode. The data

http://www.electronicsengineering.nbcafe.in/programmed-i-o-data-transfer-scheme-8085-microprocessor/
http://www.electronicsengineering.nbcafe.in/interrupt-driven-i-o-data-transfer/
http://www.electronicsengineering.nbcafe.in/direct-memory-access-dma-data-transfer/

transfer can be synchronous or asynchronous it completely
depends upon the type and the speed of the I/O devices.

Synchronous type of data transfer

Synchronous type of data transfer can be used when the speed of
the 1/O devices matches with the speed of the 8085
microprocessor. So for synchronization established between /O
device and microprocessor we need common clock pulse. This
common clock pulse synchronizes the microprocessor and the I/O
devices. Synchronous type of data transfer scheme because of the
matching of the speed, the microprocessor does not have to wait
for the availability of the data. The microprocessor immediately
sends data for the transfer as soon as the microprocessor issues a
signal.

The asynchronous data transfer

The asynchronous data transfer method is used when the speed of
the I/O devices is slower than the speed of the microprocessor.
Because of the mismatch of the speed, the internal timing of the
I/O device is independent from the microprocessor. That is why two
units are said to be asynchronous to each other. The asynchronous
data transfer is normally implemented using ‘handshaking’ mode.
Now question is what is handshaking mode? In the handshaking
mode some signals are exchanged between the 1/O device and
microprocessor before the data transfer takes place.

By this handshaking the microprocessor has to check the status to
the input/output device. Now if the device is ready for the data
transfer or not.
First step of microprocessor is initiates the I/O device to get
ready.
Then status of the 1/O device is continuously checked by the
Microprocessotr.

This process remain continues until the I/O device becomes

ready.
After that microprocessor sends instructions to transfer the

data.

SEND READY SIGNAL
TS THE 1S DEVICE

Y

EXECUTE /0
INSTRUCTIONS

b d

STOP

Now form this bellow figure, the microprocessor sends a ready
signal to 1/0 device. When the device is ready to accept the data,
the I/O device sends an ‘ACK’ (Acknowledge) signal to
microprocessor. By sending ACK, it indicating that the 1/0O device
has acknowledged the ‘Ready’ signal. Now finally it is ready for
the transfer of data.

DATA BUS
 —

MICROPROCE SSOR 1/0 DEVICE
ACH TATUS

READY START

Again in bellow figure shows the asynchronous handshaking
process to transfer the data from the 1/0O device to
microprocessor. In this case I/O device issues the ready signal to
microprocessor indicating that I/O device is ready to send the
data to microprocessor. In response to this signal, valid data
signal is sent by the microprocessor to I/O device and then the
valid data is put on the data bus for the transfer.

" DATL BUS >

MICSOPROCESSOR 1D DEVICE
READY

ATATLS

VALIDDATA | oRT

Interrupt Driven 1/O Data Transfer

As we saw that in the programmed |/O data transfer method,
microprocessor is busy all the time in checking for the availability
of data from the slower I/O devices. And it also busy in checking if
I/O device is ready for the data transfer or not. In other words, in
this data transfer scheme, some of the microprocessor time is
wasted in waiting while an I/O device is getting ready. To
overcome this problem interrupt driven 1/O data transfer
introduced.

The interrupt driven I/O data transfer method is very efficient
because no microprocessor time is wasted in waiting for an I/O
device to be ready. In this interrupt driven I/O data transfer
method the I/O device informs the microprocessor for the data
transfer whenever the 1/O device is ready. This is achieved by
interrupting the microprocessor. As we know that the interrupt is
hardware facilities provided on the microprocessor.

http://www.electronicsengineering.nbcafe.in/programmed-i-o-data-transfer-scheme-8085-microprocessor/

MICROPROCESSOR I/ODEVICE
INTR REQUEST

INTR ACKNOWLEDGE

Now come to the working process of interrupt driven 1/O data
transfer. So the beginning the microprocessor initiates data
transfer by requesting the 1/0 device ‘to get ready’ and then
continue executing its original program rather wasting its time by
checking the status of 1/0 device. Whenever the device is ready
to accept or supply data, it informs the processor through a
control signal. This control signal known as interrupt (INTR)
signal. In response to this interrupt signal, the microprocessor
sends back an interrupt acknowledge signal to the 1/O device. By
sending acknowledgement it indicating that it received the
request. It then suspends its job after executing the current
instruction. It saves the contents and status of program counter to
stack and jumps to the subroutine program.

This subroutine program is called Interrupt Service Subroutine
(ISS) program. The ISS saves the processor status into stack; and
after executing the instruction for the data transfer, it restores the
processor status and then returns to main program.

several input/output devices may be connected to microprocessor
using Interrupt Driven Data Transfer Scheme. Following interrupt
request configuration may arise while interfacing the I/O devices to
MiCcroprocessor.

1. Single Interrupt system

2. Multi Interrupt System

Single Interrupt System

When only one interrupt line is available with the microprocessor
and several 1/0 devices are to be connected, then the method is
known as Single Interrupt System.

Multi Interrupt System

When the microprocessor has several interrupt terminals and
one I/O device is to be connected to each interrupt terminal, then it
iIs known as multi interrupt system. In this scheme, the number of
I/O devices to be connected to the interrupt lines should be equal
to or less than the number of interrupt terminals. In this way one
device is connected to each level of interrupt. So when a device
interrupts the microprocessor, it immediately knows which device
has interrupted. Such an interrupt scheme is known as vectored
interrupt.

Direct Memory Access (DMA) Data Transfer

As we discussed earlier that in programmed 1/O or interrupt driven
I/O methods of data transfer between the 1/O devices and external
memory is via the accumulator. Now think for bulk data transfer
from 1/O devices to memory or vice-versa, these two methods
discussed above are time consuming and quite uneconomical even
though the speed of I/O devices matches with the speed of
microprocessor. Because in those methods the data is first
transferred to accumulator and then to concerned device.

To overcome those problem direct memory access data transfer
method is introduced. The Direct Memory Access (DMA) data
transfer method is used for bulk data transfer from 1/0O devices to
microprocessor or vice-versa. In this method I/O devices are
allowed to transfer the data directly to the external memory
without being routed through accumulator. For this reason the

microprocessor relinquishes the control over the data bus and
address bus, so that these can be used for transfer of data
between the devices.

Working principle of direct memory access data transfer

So now come to working principle of direct memory access data
transfer. For the data transfer using DMA process, a request to the
microprocessor in form of HOLD signal, by the 1/O device is sent.
When microprocessor receipt of such request, the microprocessor
relinquishes the address and data buses and informs the 1/O
devices of the situation by sending Acknowledge signal HLDA. The
I/O device withdraws the request when the data transfer between
the 1/0O device and external memory is complete.

ADDRESS BUS 170 Device

|

t DATA BUS
) |
I

DA ACKNOWLEDGE

DMA REQUEST

If we discuss in brief about working principal of DMA controller.
Then we should mention that DMA controller is used with the
microprocessor that helps to generate the addresses for the data
to be transferred from the 1/O devices. The peripheral device
sends the request signal (DMARQ) to the DMA controller and the
DMA controller in turn passes it to the microprocessor (HOLD
signal). On receipt of the DMA request the microprocessor sends
an acknowledge signal (HLDA) to the DMA controller. On receipt
of this signal (HLDA) the DMA controller sends a DMA
acknowledge signal (DMACK) to the I/O device. The DMA

controller then takes over the control of the buses of
microprocessor and controls the data transfer between RAM and
I/O device. When the data transfer is complete, DMA controller
returns the control over the buses to the microprocessor by
disabling the HOLD and DMACK signals.

Now question is how many way DMA can work? It may be
mentioned here that DMA transfer the data of the following types:

Memory to I/O device
I/O device to memory
Memory to memory

I/O device to I/O device

8086 microprocessor

(by Garima Rohela)

8086 Microprocessor features:

1. It is 16-bit microprocessor

2. It has a 16-bit data bus, so it can read data from or write data to
memory and ports either 16-bit or 8-bit at

a time.

3. It has 20 bit address bus and can access up to 220 memory locations
(1 MB).

4. It can support up to 64K 1/O ports

5. It provides 14, 16-bit registers

6. It has multiplexed address and data bus ADO-AD15 & A16-A19

7. It requires single phase clock with 33% duty cycle to provide internal
timing.

8. Prefetches up to 6 instruction bytes from memory and queues them
in order to speed up the processing.

9. 8086 supports 2 modes of operation

a. Minimum mode

b. Maximum mode

Architecture of 8086 microprocessor :

As shown in the figure, the 8086 CPU is divided into two independent
functional parts

o Bus Interface Unit(BIU)

o Execution Unit(EU)

Dividing the work between these two units speeds up processing.

BIU (Bus interface unit):

- It handles all transfers of data and addresses on the buses for the
execution unit.
- Sends out addresses

- Fetches instructions from memory.
- Read / write data from/to ports and memory i.e. handles all
transfers of data and addresses on the busses

EU (Execution unit):

- Tells BIU where to fetch instructions or data from
- Decodes instructions
- Executes instructions

MEMORY
INTERFACE

B T T ——

I

|

|

[I
5 INSTRUCTION |
STREAM 1

4 BYTE |
3 |
2 1
1 |
|

QUEUE

CONTROL
SYSTEM

ARITHMETIC
LOGIC UNIT

[L A

OPERANDS | /J

FLAGS |

Functional Block Diagram of 8086 Microprocessor
Instruction Decoder & ALU:

Decoder in the EU translates instructions fetched from the memory into
a series of actions which the EU carries out.16-bit ALU in the EU
performs actions such as AND, OR, XOR, increment, decrement etc.

FLAG Register:

It is a 16-bit register. 9-bit are used as different flags, remaining bits
unused

OF |DF |IF |TF |SF |ZF AF PF CF

Fig: 16-bit flag register

Out of 9-flags, 6 are conditional (status) flags and three are control
flags

Conditional flags:

These are set or reset by the EU on the basis of the results of some
arithmetic or logic operation. 8086 instructions check these flags to
determine which of two alternative actions should be done in executing
the instructions.

1. OF (Overflow flag): is set if there is an arithmetic overflow, i.e. the
size of the result exceeds the capacity of the destination location.

2. SF (Sign flag): is set if the MSB of the result is 1
3. ZF (Zero flag): is set if the result is zero

4. AF (Auxiliary carry flag): is set if there is carry from lower nibble to
upper nibble or from lower byte to upper byte

5. PF (Parity flag): is set if the result has even parity

6. CF (Carry flag): is set if there is carry from addition or borrow from
subtraction

Control flags:

They are set using certain instructions. They are used to control certain
operations of the processor.

1. TF (Trap flag): for single stepping through the program

2. IF (Interrupt flag): to allow or prohibit the interruption of a
program

3. DF (Direction flag): Used with string instructions

General purpose Registers (GPRs):

There are 8 GPRs AH, AL (Accumulator), BH, BL, CH, CL, DH, DL are used
to store 8 bit data.

AL register is also called the accumulator
Used individually for the temporary storage of data

GPRs can be used together (as register pair) to store 16-bit data words.
Acceptable register pairs are:

AH-AL pair AX register

BH-BL pair BX register (to store the 16-bit data as well as the base
address of the memory location)

CH-CL pair CX register (to store 16-bit data and can be used as counter
register for some instructions like loop)

DH-DL pair DX register (to store 16-bit data and also used to hold the
result of 16-bit data multiplication and division operation)

Pointer and Index registers:

SP (Stack Pointer), BP (Base pointer), Sl (Source Index), DI (Destination
index)

Pointer Registers:

The two pointer registers, SP and BP are used to access data in the
stack segment. The SP is used as offset from current Stack Segment
during execution of instruction that involve stack. SP is automatically
updated. BP contains offset address and is utilized in based addressing
mode. Overall, these are used to hold the offset address of the stack
address.

Index Registers:

EU also contains a 16-bit source index (SI) register and 16-bit
destination index (Dl) register. These registers can be used for
temporary storage of data similarly as the general purpose registers.
However they are specially to hold the 16-bit offset of the data word.
Sl and DI are used to hold the offset address of the data segment and
extra segment memory respectively.

Bus Interface Unit:

The QUEUE:

When EU is decoding or executing an instruction, bus will be free at
that time. BIU pre-fetches up to 6-instructions bytes to be executed and
places them in QUEUE. This improves the overall speed because in each
time of execution of new instruction, instead of sending address of next
instruction to be executed to the system memory and waiting from the
memory to send back the instruction byte, EU just picks up the fetched
instruction byte from the QUEUE.

The BIU stores these pre-fetched bytes in a first-in-first-out (FIFO)
register set called a queue. Fetching the next instruction while the
current instruction executes is called pipelining.

Segment Registers:

The BIU contains a dedicated address, which is used to produce the 20
bit address. The bus control logic of the BIU generates all the bus
control signals, such as the READ and WRITE signals, for memory and
I/O. The BIU also has four 16 bit segments registers namely:

1. Code segment: holds the upper 16-bits of the starting addresses
of the segment from which BIU is currently fetching instruction
code bytes.

2. Stack segment: store addresses and data while subprogram
executes

3. Extra segment: store upper 16-bits of starting addresses of two
memory segments that are used for data.

4. Data segment: store upper 16-bits of starting addresses of two
memory segments that are used for data.

Code Segment Register (CS) and Instruction Pointer (IP)

All program instructions located in memory are pointed using 16 bits of
segment register CS and 16 bits offset contained in the 16 bit
instruction pointer (IP). The BIU computes the 20 bit physical address
internally using the logical address that is the contents of CS and IP. 16
bit contents of CS will be shifted 4 bits to the left and then adding the
16 bit contents of IP. Thus, all instructions of the program are relative
contents of IP. Simply stated, CS contains the base or start of the
current code segment, and IP contains the distance or offset from this
address to the next instruction byte to be fetched.

PHYSICAL MEMORY
ADDRESS

38AB4H 2> l¢&—— CODE BYTE

IP = 4214H

A4
348A0H > [¢—— START OF CODE SEGMENT

CS= 348AH

Above fig shows addition of IP to CS to produce the physical address
of code byte Stack Segment Register (SS) and Stack Pointer (SP)

The stack segment registers points to the current stack. The 20 bit
physical stack address is calculated from the SS and SP. The
programmer can also use Base Pointer (BP) instead of SP for
addressing. In this case, the A stack is a section of memory to store
addresses and data while a subprogram is in progress. 20 bit physical
address is calculated using SS and BP.

Pin diagram of 8086 microprocessor

Pin diagram of 8086 microprocessor is as given below:

MAX MIN
MODE MODE
GND g1 M 40 B v
ADw I 2 39 O ADss
ADi: O 3 a8 O ADwerS:
ADyz I 4 37 B OAD7Ss
AD1 O 5 36 3 ADa/Ss
ADp O E 35 B AD4a/Ss
ADs O 7 34 E BHEYS;
AD: O & 33 B MHMX
AD: O 5 32 @ RD
AD: O 10 8086 31 @ ROYGTy HOLD
ADs O 11 30 3 ROYGTYY HLDA
aADa O 12 29 O LOCK’ WR'
AD: O 13 28 A s /10"
AD: O 14 pri = I DT/R"
ADs O 15 26 @A 5 DEN®
AD; O 16 28 B asg ALE
NI O 17 240 as INTA"
INTR O] 18 23 A TEST
CLK O 19 22 3 READY
GHD O =20 21 @A RESET

Intel 8086 is a 16-bit HMOS microprocessor. It is available in 40
pin DIP chip. It uses a 5V DC supply for its operation. The 8086
uses 20-line address bus. It has a 16-line data bus. The 20 lines
of the address bus operate in multiplexed mode. The 16-low order
address bus lines have been multiplexed with data and 4 high-
order address bus lines have been multiplexed with status
signals.

ADO-AD15 : Address/Data bus. These are low order address
bus. They are multiplexed with data. When AD lines are used to
transmit memory address the symbol A is used instead of AD, for
example A0-A15. When data are transmitted over AD lines the
symbol D is used in place of AD, for example DO-D7, D8-D15 or
DO-D15.

A16-A19 : High order address bus. These are multiplexed with
status signals.

S2, S1, SO : Status pins. These pins are active during T4, T1 and
T2 states and is returned to passive state (1,1,1 during T3 or Tw
(when ready is inactive). These are used by the 8288 bus
controller for generating all the memory and I/O operation) access
control signals. Any change in S2, S1, SO during T4 indicates the
beginning of a bus cycle.

0 0 0 Interrupt acknowledge
0 0 1 Read 1/O port

0 1 0 Write 1/0 port

0 1 1 Halt

1 0 0 Code access

1 0 1 Read memory

1 1 0 Write memory

1 1 1 Passive state

Al16/S3, A17/S4, A18/S5, A19/S6 :
The specified address lines are multiplexed with corresponding
status signals.

0 0 Extra segment access
0 1 Stack segment access
1 0 Code segment access
1 1 Data segment access

BHE’/S7 : Bus High Enable/Status. During T1 itis low. It is used
to enable data onto the most significant half of data bus, D8-D15.
8-bit device connected to upper half of the data bus use BHE’
(Active Low) signal. It is multiplexed with status signal S7. S7
signal is available during T2, T3 and T4.

RD’: This is used for read operation. It is an output signal. It is
active when low.

READY : This is the acknowledgement from the memory or slow
device that they have completed the data transfer. The signal
made available by the devices is synchronized by the 8284A
clock generator to provide ready input to the microprocessor. The
signal is active high(1).

INTR : Interrupt Request. This is triggered input. This is sampled
during the last clock cycles of each instruction for determining the
availability of the request. If any interrupt request is found
pending, the processor enters the interrupt acknowledge cycle.
This can be internally masked after resulting the interrupt enable

flag. This signal is active high(1) and has been synchronized
internally.

NMI : Non maskable interrupt. This is an edge triggered input
which results in a type Il interrupt. A subroutine is then vectored
through an interrupt vector lookup table which is located in the
system memory. NMI is non-maskable internally by software. A
transition made from low(0) to high(1) initiates the interrupt at the
end of the current instruction. This input has been synchronized
internally.

INTA’ : Interrupt acknowledge. It is active low(0) during T2, T3
and Tw of each interrupt acknowledge cycle.

MN/MX’ : Minimum/Maximum. This pin signal indicates what
mode the processor will operate in.

RQ’/GT1’, RQ’/GTO' : Request/Grant. These pins are used by
local bus masters used to force the microprocessor to release the
local bus at the end of the microprocessor’s current bus cycle.
Each of the pin is bi-directional. RQ'/GTO" have higher priority
than RQ/GT1".

LOCK’ : Its an active low pin. It indicates that other system bus
masters have not been allowed to gain control of the system bus
while LOCK’ is active low(0). The LOCK signal will be active until
the completion of the next instruction.

TEST’ : This examined by a ‘WAIT’ instruction. If the TEST pin
goes low(0), execution will continue, else the processor remains
in an idle state. The input is internally synchronized during each of
the clock cycle on leading edge of the clock.

CLK : Clock Input. The clock input provides the basic timing for
processing operation and bus control activity. Its an asymmetric
square wave with a 33% duty cycle.

RESET : This pin requires the microprocessor to terminate its
present activity immediately. The signal must be active high(1) for
at least four clock cycles.

Vcc : Power Supply(+5V D.C.)
GND : Ground

QS1,0S0 : Queue Status. These signals indicate the status of the
internal 8086 instruction queue according to the table shown
below

0 0 No operation

0 1 First byte of op code from queue
1 0 Empty the queue

1 1 Subsequent byte from queue

DT/R : Data Transmit/Receive. This pin is required in minimum
systems, that want to use an 8286 or 8287 data bus transceiver.
The direction of data flow is controlled through the transceiver.

DEN : Data enable. This pin is provided as an output enable for
the 8286/8287 in a minimum system which uses transceiver. DEN

is active low(0) during each memory and input-output access and

for INTA cycles.

HOLD/HOLDA : HOLD indicates that another master has been
requesting a local bus .This is an active high(1). The
microprocessor receiving the HOLD request will issue HLDA
(high) as an acknowledgement in the middle of a T4 or T1 clock

cycle.

ALE : Address Latch Enable. ALE is provided by the
microprocessor to latch the address into the 8282 or 8283
address latch. It is an active high(1) pulse during T1 of any bus
cycle. ALE signal is never floated, is always integer.

Difference between Minimum Mode and Maximum Mode

Minimum mode

Maximum Mode

In minimum mode there can be only one
processor i.e. 8086.

In maximum mode there can be multiple
processors with 8086, like 8087 and 8089.

MN/MX is 1 to indicate minimum mode.

MN/MX is 0 to indicate maximum mode.

ALE for the latch is given by 8086 as it is
the only processor in the circuit.

ALE for the latch is given by 8288 bus
controller as there can be multiple processors
in the circuit.

DEN and DT/R for the trans-receivers
are given by 8086 itself.

DT/R’ for the trans-receivers are given by
8288 bus controller.

Direct control signals M/IO’, RD’ and
WR’ are given by 8086.

Instead of control signals, each processor

generates status signals called S2’ S1° and
SO’

Control signals M/IO’ RD’ and WR’ are
decoded by a 3:8 decoder like 74138.

Status signals S2° S1° and S0’ are decoded
by a bus controller like 8288 to produce
control signals.

INTA’is given by 8086 in response to an
interrupt on INTR line.

INTA is given by 8288 bus controller in
response to an interrupt on INTR line.

Differences between 8085 and 8086
microprocessor

In the changing world of technologies, the devices used are also changing.
Let us take a look at the changes between 8085 series of microprocessors
and 8086 series of microprocessors.

1 The data bus is of 8 bits. The data bus is of 16 bits.

2 The address bus is of 16 bits. The address bus is of 20 bits.

3. The memory capacity is 64
KB.Also 8085 Can
Perform Operation Upto
278 ie. 256 numbers. A The memory capacity is 1
number greater than this is MB.Also 8086 Can Perform
to taken multiple times in Operation upto 216 ie. 65,536

8 bit data bus. numbers.

4. The input/output port The input/output port

addresses are of 8 bits. addresses are of 8 bits.

5 The operating frequency

is 3.2 MHz.

6.8085 MP has Single Mode

Of Operation.

7.1t not have multiplication and

division instructions.

8.1t does not support pipe-lining.

9.1t does not support instruction

queue.

The operating frequency is 5

MHz, 8BMHZ,10MHZ.

8086 MP has Two Modes Of
Operation.
1. Minimum Mode = SingLe
CPU PROCESSOR
2. Maximum Mode = Multiple

CPU PROCESSOR.

It have multiplication and

division instructions.

It supports pipe-lining as it has
two independent units
Execution Unit (EU) and Bus

Interface Unit (BIU).

It supports instruction queue.

10.Memory space is not

segmented. Memory space is segmented.

It consists of 9 flags(Overflow

Flag, Direction Flag, Interrupt
11.1t consists of 5 flags(Sign Flag, Trap Flag, Sign Flag,
Flag, Zero Flag, Auxiliary Carry Zero Flag, Auxiliary Carry

Flag, Parity Flag, Carry Flag). Flag, Parity Flag, Carry Flag).

	Microprocessor 8085 & Peripherals Interfacing Devices.pdf
	8085 INTRODUCTION
	Slide 2
	8085 PIN DIAGRAM
	8085 PIN DESCRIPTION
	Slide 5
	Slide 6
	8085 ARCHITECTURE
	Arithmetic and Logical group
	Arithmetic and Logical group
	Register Group
	Slide 11
	INSTRUCTION REGISTER,DECODER & CONTROL
	INTERRUPT CONTROL
	INSTRUCTIONS SET OF 8085
	DATA TRANSFER GROUP
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	ARITHMETIC GROUP
	ARITHMEIC GROUP
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	LOGICAL GROUP
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	BRANCH GROUP
	CALL address(Unconditional CALL from address)
	BRANCH GROUP
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	STACK AND MACHINE CONTROL
	Slide 57
	Slide 58
	ADDRESSING MODES OF 8085
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	PROGRAM
	Slide 65
	Slide 66
	Slide 67
	TIMING AND STATE DIAGRAM
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	SUBROUTINE
	Slide 74
	8085 Memory Interfacing
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	8255 PIN DIAGRAM
	8255 BLOCK DIAGRAM
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	8255 MODES
	INTERFACING 8085 & 8255
	INTERFACING 8085 & 8255
	Slide 89
	Slide 90
	INTERFACING STEPPER MOTOR with 8255
	SERIAL COMMUNICATION
	Slide 93
	Slide 94
	TRANSMISSION FORMATS
	INTERRUPTS IN 8085
	Slide 97
	Slide 98
	Slide 99
	INTERRUPT PRIORITY
	SIM INSTRUCTION
	Slide 102
	RIM INSTRUCTION
	8253 PIT
	8253 Features
	CONTROL WORD
	CONTROL WORD
	8253 SQUARE WAVE
	Slide 109
	DMA
	8257 DMA
	OPERRATING MODES OF 8257

	instruction set pdf.pdf
	3. addressing modes in 8085.pdf
	5. Interrupts and subroutine in 8085 microprocessor.pdf
	6. concept of memory mapping.pdf
	7. 8255_PPI.pdf
	8. 8237_DMA_controller.pdf
	9. data transfer_techniques of 8085.pdf
	10. MP_8086.pdf

