Computer
Organization

Prepared By:-
Sunita Lather

After reading this chapter, the reader should
be able to:

B Distinguish between the three components of a

computer hardware.
W List the functionality of each component.

B Understand memory addressing and calculate the
number of bytes for a specified purpose.

B Distinguish between different types of memories.

B Understand how each input/output device works.

Keyboard

Mouse

Other input

Other input

\\

Computer System Hardware

Monitor
Printer
Speaker
Data ¢ Information V
Ram
Other output
HDD CD
Memory
I BIOS I Basic Input/Output System

1

B1
B2
B3
R
R5
RG6
R

‘LTTTTTTT

Load
(7 lines) —
SELA{ —
—ffi-

MU X

41 TyTYYyvwyY

Ind
decoder

tr

SELD
OPR

lﬂ. bus

MUX

J'B bus

Addressing Modes:

* Specifies a rule for interpreting or modifying the
address field of the instruction (before the operand
is actually referenced)

* Variety of addressing modes
- to give programming flexibility to the user

- to use the bits in the address field of the
instruction efficiently

Implied Mode
Address of the operands are specified implicitly
in the definition of the instruction
- No need to specify address in the instruction
- EA=AC, or EA = Stack[SP], EA: Effective Address.

Immediate Mode
Instead of specifying the address of the operand,
operand itself is specified
- No need to specify address in the instruction
- However, operand itself needs to be specified
- Sometimes, require more bits than the address
- Fast to acquire an operand

Register Mode
Address specified in the instruction is the register address
- Designated operand need to be in a register
- Shorter address than the memory address
- Saving address field-in-the-instruction
- Faster to acquire an operand than the memory addressing
=IR(R) (IR(R): Register field of IR)

Register Indirect Mode

Instruction specifies a register which contains
the memory address of the operand

- Saving instruction bits since register address
is shorter than the memory address

- Slower to acquire an operand than both the
register addressing or memory addressing

- EA =[IR(R)] ([x]: Content of x)

Auto-increment or Auto-decrement features:
Same as the Register Indirect, but:
- When the address in the register is used to access memory, the
value in the register is incremented or decremented by 1 (after or
the execution of the instruction)

before

Direct Address Mode
Instruction specifies the memory address which
can be used directly to the physical memory
- Faster than the other memory addressing modes
- Too many bits are needed to specify the address
for a large physical memory space
- EA = IR(address), (IR(address): address field of IR)

Indirect Addressing Mode
The address field of an instruction specifies the address of a memory
that contains the address of the operand
- When the abbreviated address is used, large physical memory can
addressed with a relatively small number of bits
- Slow to acquire an operand because of an additional memory
- EA = M[IR(address)]

location
be

dCCesSS

Types of Interrupts:

External interrupts

External Interrupts initiated from the outside of CPU and Memory
- I/O Device -> Data transfer request or Data transfer complete

- Timing Device -> Timeout

- Power Failure

Internal interrupts (traps)
Internal Interrupts are caused by the currently running program
- Register, Stack Overflow
- Divide by zero
- OP-code Violation
- Protection Violation

Software Interrupts
Both External and Internal Interrupts are initiated by the computer Hardware.
Software Interrupts are initiated by texecuting an instruction.
- Supervisor Call -> Switching from a user mode to the supervisor mode
-> Allows to execute a certain class of operations
which are not allowed in the user mode

Historical Background
IBM System/360, 1964

- The real beginning of modern computer architecture
- Distinction between Architecture and Implementation
- Architecture: The abstract structure of a computer
seen by an assembly-language programmer

Compller program
ngh -Level Hardware
Language

Archltecture Implementatlon

Continuing growth in semiconductor memory and microprogramming
-> A much richer and complicated instruction sets
=> CISC(Complex Instruction Set Computer)

- Arguments advanced at that time
Richer instruction sets would simplify compilers
Richer instruction sets would alleviate the software crisis
- move as much functions to the hardware as possible
- close Semantic Gap between machine language

and the high-level-fanguage

Richer instruction sets would improve the architecture quality

Common RISC Characteristics

- Operations are register-to-register, with only LOAD and STORE
accessing memory

- The operations and addressing modes are reduced
Instruction formats are simple

More characteristics are as:
- Relatively few instructions
- Relatively few addressing modes
- Memory access limited to load and store instructions
- All operations done within the registers of the CPU
- Fixed-length, easily decoded instruction format
- Single-cycle instruction format
- Hardwired rather than microprogrammed control

abhoh—=

High Performance General Purpose Instructions

Characteristics of CISC:

A large number of instructions (from 100-250 usually)

Some instructions that performs a certain tasks are not used frequently.
Many addressing modes are used (5 to 20)

Variable length instruction format.

Instructions that manipulate operands in memory.

Storage Components:
Registers
Flip-flops

Execution (Processing) Components:
Arithmetic Logic Unit (ALU):

Arithmetic calculations, Logical computations, Shifts/Rotates

Transfer Components:
Bus

Control Components:

Control Unit

Register
File

A

o
o
/ /x/////

\
ALU

Py P
= \\\\\\\](<

Control Unit

Memory with Program, Data, Program
and Stack Segments (instructions)

Data
(operands)

- A portion of memory is used as a stack with a
processor register as a stack pointer

- PUSH: SP <SP -1
M[SP] < DR

- POP: DR « M[SP]
SP « SP +1

- Most computers do not provide hardware to check
stack overflow (full stack) or underflow(empty stack)

Instruction Fields

OP-code field - specifies the operation to be performed

Address field - designates memory address(s) or a processor register(s)
Mode field - specifies the way the operand or the
effective address is determined

The number of address fields in the instruction format
depends on the internal organization of CPU

- The three most common CPU organizations:
Single accumulator organization:

ADD X [* AC < AC + M[X] */
General register organization:

ADD R1, R2, R3 [*R1<R2+R3 *

ADD R1, R2 "R1«<R1+R2 *

MOV R1, R2 I*R1<«R2 ¥

ADD R1, X [*R1 < R1+M[X] */
Stack organization:

PUSH X I* TOS « M[X] */

ADD

Three-Address Instructions:

Program to evaluate X=(A+B)*(C +D):
ADD R1,A,B /* R1« M[A]+M[B] 7
ADD R2,C,D [* R2« M[C]+M[D] *
MUL X, R1,R2 [* M[X] < R1*R2"*

- Results in short programs
- Instruction becomes long (many bits)

Two-Address Instructions:

Program to evaluate X=(A+B)*(C+D):

MOV R1,A FR1<MA] ¥
ADD R1,B [*R1 < R1+M[B] *
MOV R2,C FR2<MC] ¥
ADD R2,D [*R2 « R2 + M[D] */

MUL R%,R2—f*R4~«—R4+R2—H
MOV X, R1 I* M[X] < R1 v

One-Address Instructions:

- Use an implied AC register for all data manipulation

- Program to evaluate X=(A+B)*(C +D):
LOAD A [* AC «— M[A] ¥
ADD B [* AC « AC + M[B] ¥
STORE T [* M[T]«<AC ¥
LOAD C [* AC < M[C] ¥/
ADD D [* AC <« AC + M[D] ¥
MUL T I* AC <« AC * M[T] ¥
STORE X [* M[X] <AC ¥

Zero-Address Instructions:

- Can be found in a stack-organized computer
- Program to evaluate X=(A+B)*(C+D):

PUSH A [TOS « A “
PUSH B [TOS « B v
ADD [TOS « (A + B) “
PUSH c [TOS « C VI
PUSH D [TOS « D v
ADD [TOS « (C + D) v
MUL [* TOS « (C+D)*(A+B) *

POP X [M[X] < TOS “

A multiprocessor is a computer system with two or more central processing
units (CPUs), with each one sharing the common main memory as well as
the peripherals. This helps in simultaneous processing of programs.

The key objective of using a multiprocessor is to boost the system’s
execution speed, with other objectives being fault tolerance and
application matching.

Benefits of using a multiprocessor include:

Enhanced performance

Multiple applications

Multiple users

Multi-tasking inside an application

High throughput and/or responsiveness
Hardware sharing among CPUs

As a uniprocessor, such as single instruction, single data (SISD)

Inside a single system for executing multiple, individual series of instructions in
multiple perspectives, such as multiple instruction, multiple data (MIMD)

A single series of instructions in various perspectives, such as single instruction,
multiple data (SIMD), which is usually used for vector processing

Multiple series of instructions in a single perspective, such as multiple instruction,
single data (MISD), which is used for redundancy in failsafe systems and, occasionally,
for describing hyper-threading or pipelined processors

Pipelining is the process of accumulating instruction from the processor
through a pipeline. It allows storing and executing instructions in an orderly
process. It is also known as pipeline processing.

Pipelining is a technique where multiple instructions are overlapped during
execution. Pipeline is divided into stages and these stages are connected
with one another to form a pipe like structure. Instructions enter from one
end and exit from another end.

Pipelining increases the overall instruction throughput.

In pipeline system, each segment consists of an input register followed by
a combinational circuit. The register is used to hold data and combinational
circuit performs operations on it. The output of combinational circuit is
applied to the input register of the next segment.

Pipeline system is like the modern day assembly line setup in factories. For
example in a car manufacturing industry, huge assembly lines are setup and at
each point, there are robotic arms to perform a certain task, and then the car

moves on ahead to the next arm.

MIMD computers are consisting of 'n' processing units; each with its own
stream of instruction and each processing unit operate on unit operates on a
different piece of data. MIMD is the most powerful computer system that
covers the range of multiprocessor systems. The block diagram of MIMD
computer is shown.

i Instruction
Comtrol 1 : Processor 1

Stream 1

Instruction . Data

Control 2 : Processor 2 Sronm 2 Shared

Stream 2 , Memory

= Instruction
Control n . Processor n :
Stream n Stream n

» SIMD computers are consisting of ‘n' processing units receiving a single
stream of instruction from a central and each processing unit
operates on a different piece of data. Most SIMD computers operate
synchronously using a single global dock. The block diagram of SIMD
computer is shown below:

Processor 1
_ Stream 1

Data
Processor 2

o Instruction

Processorn
Stream n

http://ecomputernotes.com/fundamental/introduction-to-computer/control-unit

THANK YOU

