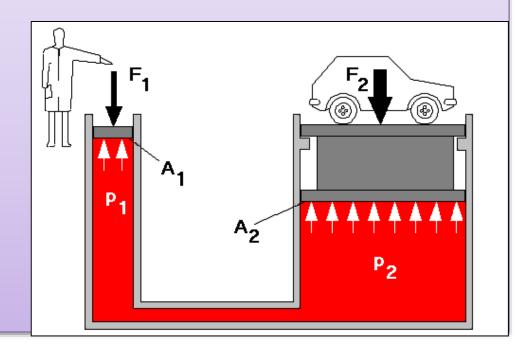
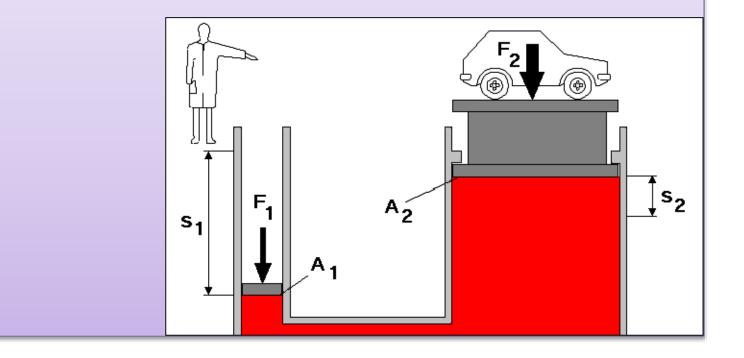
LEARNING OBJECTIVES

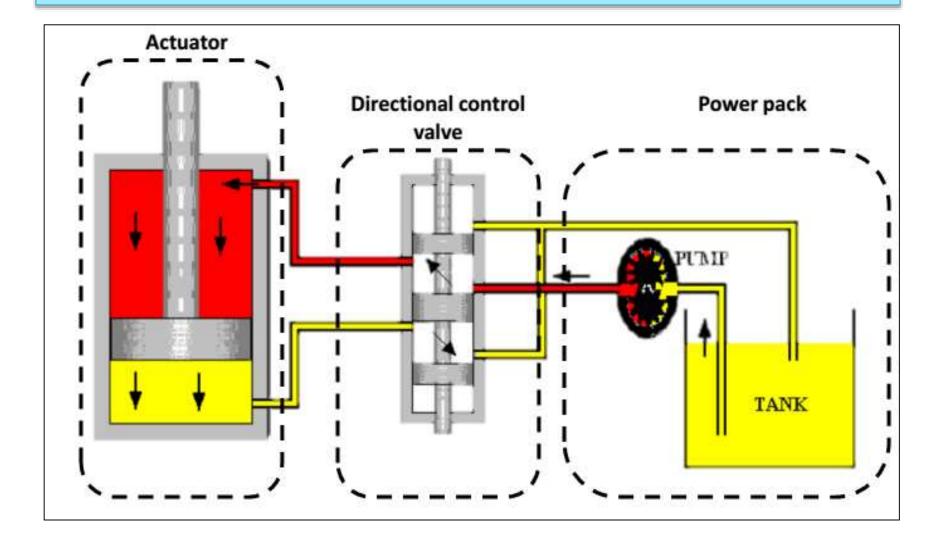

- Explain the **meaning** of fluid power.
- List the various **applications** of fluid power.
- Differentiate between fluid power and transport systems.
- List the advantages and disadvantages of fluid power.
- Explain the industrial applications of fluid power.
- List the **basic components** of the **fluid power**.
- List the **basic components** of the **pneumatic systems**.
- **Differentiate** between electrical, pneumatic and fluid power systems.
- Appreciate the future of fluid power in India.

INTRODUCTION

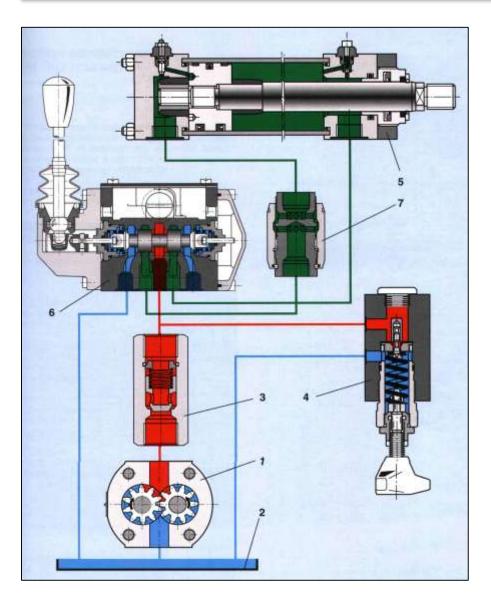
- In the industry we use three methods for transmitting power from one point to another.
- Mechanical transmission is through shafts, gears, chains, belts, etc.
- Electrical transmission is through wires, transformers, etc.
- Fluid power is through liquids or gas in a confined space.
- In this PPT, we shall discuss a structure of hydraulic systems and pneumatic systems.

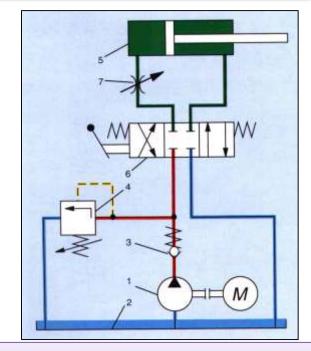

HYDRAULIC FLUID TRANSMISSION

- Let : F = Force(N)
- P = Pressure (N/m2)
- A = Area (m2)

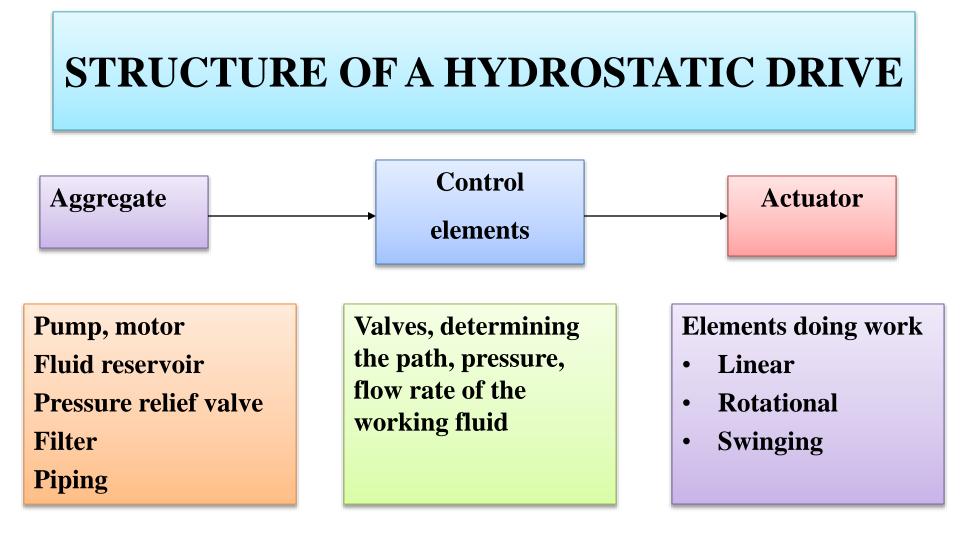


HYDRAULIC FLUID COMPENSATION


- Let : S = Displacement(m)
- A = Area (m2)



HYDRAULIC SYSTEM



A TYPICAL HYDRAULIC SYSTEM

- **1 pump**
- 2 oil tank
- 3 flow control valve
- 4 pressure relief valve
- 5 hydraulic cylinder
- **6 directional control valve**
- 7 throttle valve

These components and their interaction is the subject of this semester

Fluid Power and Its Scope

- Fluid power is the technology that deals with the generation, control and transmission of forces and movement of mechanical element or system with the use of pressurized fluids in a confined system. Both liquids and gases are considered fluids. Fluid power system includes a hydraulic system (hydra meaning water in Greek) and a pneumatic system (pneuma meaning air in Greek). Oil hydraulic employs pressurized liquid petroleum oils and synthetic oils, and pneumatic employs compressed air that is released to the atmosphere after performing the work.
- the term "fluid" we refer to air or oil, for it has been shown that water has certain drawbacks in the transmission of hydraulic power in machine operation and control.
- The application of fluid power is limited only by the ingenuity of the
- designer, production engineer or plant engineer. If the application pertains to lifting, pushing, pulling, clamping, tilting, forcing, pressing or any other straight line (and many rotary)
- motions, it is possible that fluid power will meet the requirement.

Fluid power applications

- Stationary hydraulics (remain firmly fixed in one position.)
- Machine tools and transfer lines.
- Lifting and conveying devices.
- Metal-forming presses.
- Plastic machinery such as injection-molding machines.
- Rolling machines.
- Lifts.
- Food processing machinery.
- Automatic handling equipment and robots.

Fluid power applications Cont.

- Mobile hydraulics (move on wheels or tracks)
- Automobiles, tractors, aeroplanes, missile, boats, etc.
- Construction machinery.
- Tippers, excavators and elevating platforms.
- Lifting and conveying devices.
- Agricultural machinery.

Industries base Application

Agriculture	Tractors; farm equipment such as mowers, ploughs, chemical and water sprayers, fertilizer spreaders, harvesters				
Automation	Automated transfer lines, robotics				
Automobiles	Power steering, power brakes, suspension systems, hydrostatic transmission				
Aviation	Fluid power equipment such as landing wheels in aircraft. Helicopters, aircraft trolleys, aircraft test beds, luggage loading and unloading systems, ailerons, aircraft servicing, flight simulators				
Construction industry/equipment	For metering and mixing of concrete rudders, excavators, lifts, bucket loaders, crawlers, post-hole diggers, road graders, road cleaners, road maintenance vehicles, tippers				
Defense	Missile-launching systems, navigation controls				
Entertainment	Amusement park entertainment rides such as roller coasters				
Fabrication industry	Hand tools such as pneumatic drills, grinders, borers, riveting machines, nut runners				
Food and beverage	All types of food processing equipment, wrapping, bottling,				
Foundry	Full and semi-automatic molding machines, tilting of furnaces, die-casting machines				
Glass industry	Vacuum suction cups for handling				

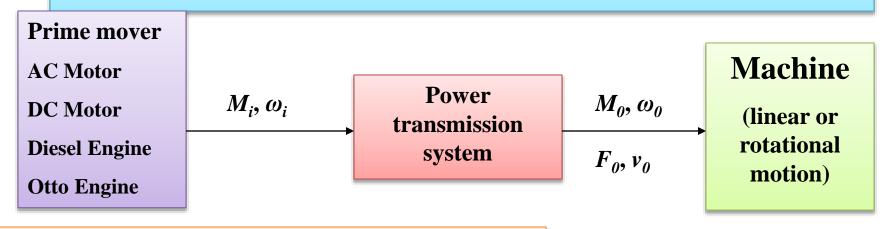
Industries base Application

Hazardous gaseous areas	Hydraulic fracturing technologies: It involves pumping large volumes of water and sand into a well at high pressure to fracture shale and other tight formations, allowing hazardous oil and gas to flow into the well. However, hydraulic fracturing has serious environmental and water pollution related issues.				
Instrumentation	Used to create/operate complex instruments in space rockets, gas turbines, nuclear power plants, industrial labs				
Jigs and fixtures	Work holding devices, clamps, stoppers, indexers				
Machine tools	Automated machine tools, numerically controlled(NC) machine tools				
Materials handling	Jacks, hoists, cranes, forklifts, conveyor systems				
Medical	Medical equipment such as breathing assistors, heart assist devices, cardiac compression machines, dental drives and human patient simulator				
Movies	Special-effect equipment use fluid power; movies such as Jurassic park, Jaws, Anaconda, Titanic				
Mining	Rock drills, excavating equipment, ore conveyors, loaders				
Newspapers and periodicals	Edge trimming, stapling, pressing, bundle wrapping				
Oil industry	Off-shore oil rigs				
Paper and packaging	Process control systems, special-purpose machines for rolling and packing				
Pharmaceuticals	Process control systems such as bottle filling, tablet placement, packaging				
Plastic industry	Automatic injection molding machines, raw material feeding, jaw closing, movement of slides of blow molder				

Industries base Application

Press tools	Heavy duty presses for bulk metal formation such as sheet metal, forging, bending, punching, etc.			
Printing industry	For paper feeding, packaging			
Robots	Fluid power operated robots, pneumatic systems			
Ships	Stabilizing systems, unloading and loading unit, gyroscopic instruments, movement of flat forms, lifters, subsea inspection equipment			
Textiles	Web tensioning devices, trolleys, process controllers			
Transportation	Hydraulic elevators, winches, overhead trams			
Under sea	Submarines, under sea research vehicles, marine drives and control of ships			
Wood working	Tree shearers, handling huge logs, feeding clamping and saw operations			

CLASSIFICATION OF FLUID POWER SYSTEMS


1. Based on the control system

- a) Open-loop system: no feedback
- b) Closed-loop system: uses feedback

2. Based on the type of control (AND, NAND, OR, NOR)

- a) Moving part logic (MPL)-
- diaphragms, disks and poppets
- Fluidics:- no moving parts and depend solely on interacting fluid jets
- b) Electrical control (controlled by electrical devices.)
- programmable logic control (PLC) or microprocessor

POWER TRAIN

• <u>Mechanical</u> power transmission:

- Gears
- Belt drive
- Friction drive
- Rigid couplings
- Clutches

Properties:

- Continuously variable drive is difficult
- The relative spatial position of prime mover is fixed
- If the motor is electrical (DC motor or AC motor with variable frequency), then the rotational speed can be continuously changed but they are expensive

HYDROSTATIC & HYDRODYNAMIC SYSTEMS

- A hydrostatic system uses fluid pressure to transmit power. Hydrostatics deals with the mechanics of still fluids and uses the theory of equilibrium conditions in fluid. The system creates high pressure, and through a transmission line and a control element, this pressure drives an actuator (linear or rotational). The pump used in hydrostatic systems is a positive displacement pump. The relative spatial position of this pump is arbitrary but should not be very large due to losses (must be less than 50 m). An example of pure hydrostatics is the transfer of force in hydraulics.
- Hydrodynamic systems use fluid motion to transmit power. Power is transmitted by the kinetic energy of the fluid. Hydrodynamics deals with the mechanics of moving fluid and uses flow theory. The pump used in hydrodynamic systems is a non-positive displacement pump. The relative spatial position of the prime mover (e.g., turbine) is fixed. An example of pure hydrodynamics is the conversion of flow energy in turbines in hydroelectric power plants.

HYDRAULIC POWER TRANSMISSION

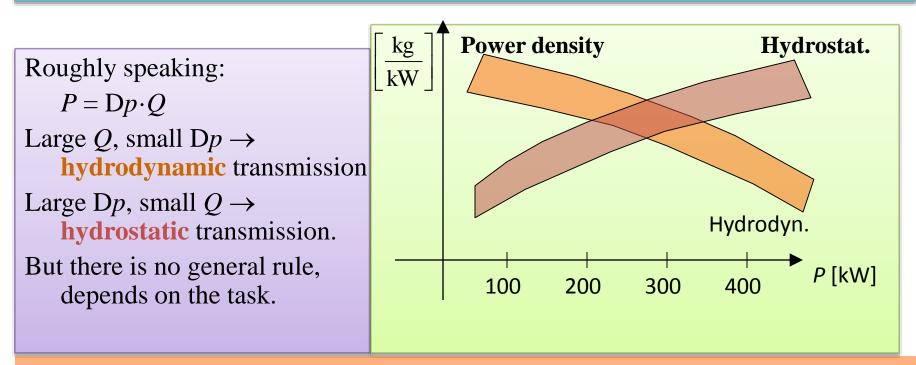
• Hydraulic power transmission:

Hydro = water, aulos = pipe

The means of power transmission is a liquid (pneumatic \rightarrow gas)

<u>Hydrodynamic</u> power transmission:

- Turbo pump and turbine
- Power transmission by kinetic energy of the fluid
- Still the relative spatial position is fixed
- Compact units


<u>Hydrostatic</u> power transmission:

- Positive displacement pump
- Creates high pressure and through a transmission line and control elements this pressure drives an actuator (linear or rotational)
- The relative spatial position is arbitrary but should not be very large because of losses (< 50 m)

✓ A continuously variable transmission is possible

Most of this lecture will be about hydrostatic systems (in common language it is also called simply hydraulics)

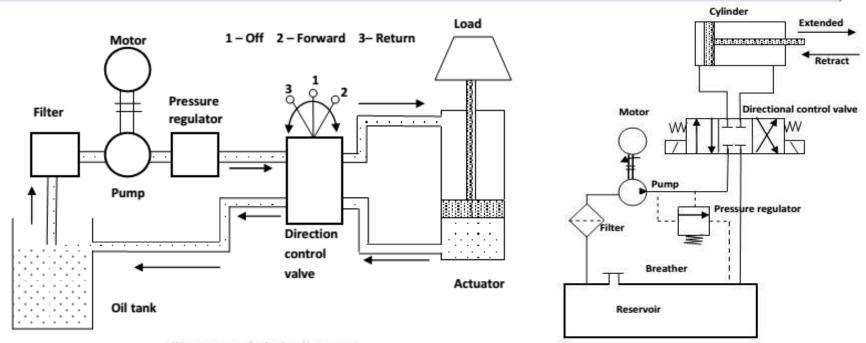
HYDROSTATIC VS HYDRODYNAMIC SYSTEMS

- o Generally larger than 300 kW power hydrodynamic is more favourable.
- o But for soft operation (starting of large masses) hydrodynamic is used for smaller powers either.
- □ Linear movement against large forces: hydrostatic
- □ Linear movement and stopping in exact position: also hydrostatic

ADVANTAGES FLUID POWER SYSTEM

- 1. Fluid power systems are simple, easy to operate and can be controlled accurately
- 2. Multiplication and variation of forces
- 3. Multifunction control:
- 4. Low-speed torque
- 5. Constant force or torque
- 6. Economical
- 7. Low weight to power ratio
- 8. Fluid power systems can be used where safety is of vital importance

ADVANTAGES OF HYDROSTATIC DRIVES


- Simple method to create linear movements
- Creation of large forces and torques, high energy density
- **Continuously variable movement of the actuator**
- Simple turnaround of the direction of the movement, starting possible under full load from rest
- Low delay, small time constant because of low inertia
- Simple overload protection (no damage in case of overload)
- Simple monitoring of load by measuring pressure
- ♦ Arbitrary positioning of prime mover and actuator
- Large power density (relatively small mass for a given power compared to electrical and mechanical drives)
- Robust (insensitive against environmental influences)

DISADVANTAGES OF HYDROSTATIC DRIVES

- Working fluid is necessary (leakage problems, filtering, etc.)
- It is not economic for large distances

Basic Components of a Hydraulic System

• Hydraulic systems are power-transmitting assemblies employing pressurized liquid as a fluid for transmitting energy from an energy-generating source to an energy-using point to accomplish useful work. Figure 1.1 shows a simple circuit of a hydraulic system with basic components.

Components of a hydraulic system

Components of a hydraulic system (shown using symbols).

HYDRAULIC FLUIDS - TASKS

Primary tasks:

- o Power transmission (pressure and motion transmission)
- o Signal transmission for control
- Secondary tasks:
- o Lubrication of rotating and translating components to avoid friction and wear
- o Heat transport, away from the location of heat generation, usually into the reservoir
- o Transport of particles to the filter
- o Protection of surfaces from chemical attack, especially corrosion

HYDRAULIC FLUIDS - REQUIREMENTS

- ➢ Functional
 - o Good lubrication characteristics
 - o Viscosity should not depend strongly on temperature and pressure
 - o Good heat conductivity
 - o Low heat expansion coefficient
 - o Large elasticity modulus

➢ Economic

o Low price

o Slow aging and thermal and chemical stability \Rightarrow long life cycle

HYDRAULIC FLUIDS -REQUIREMENTS (CONTD.)

➢ Safety

- o High flash point or in certain cases not inflammable at all
- o Chemically neutral (not aggressive at all against all materials it touches)
- o Low air dissolving capability, not inclined to foam formation
- Environmental friendliness
 o No environmental harm
 o No toxic effect

HYDRAULIC FLUID TYPES

- 1. Water (3%) 1
- 2. Mineral oils (75%)
- 3. Not inflammable fluids (9%)
- 4. Biologically degradable fluids (13%)
- 5. Electro rheological fluids (in development)

<u>1. Water:</u>

- Clear water
 - Water with additives
 - o Oldest fluid but nowadays there is a renaissance
 - Used where there is an explosion or fire danger or hygienic problem:Food and pharmaceutical industry, textile industry, mining

Advantages:

- ♂ No environmental pollution
- ් No disposal effort
- ් Cheap
- ろ No fire or explosion danger
- Available everywhere
- 4 times larger heat conduction coefficient than mineral oils
- \bigcirc 2 times higher compression module than mineral oils
- Viscosity does not depend strongly on temperature

1. <u>Water</u>:

Disadvantages:

- ℽ Bad lubrication characteristics
- Low viscosity (problem of sealing, but has good sides: low energy losses)
- ♀ Corrosion danger
- ♀ Cavitation danger (relatively high vapour pressure)
- Limited temperature interval of applicability (freezing, evaporating)

Consequences: needs low tolerances and very good materials (plastics, ceramics, stainless steel) \Rightarrow components are expensive

2. Mineral oil:

- Without additives
- With additives
 - o "Conventional" use, stationary hydraulics
 - o Always mixtures of different oils, often with additives Additives:
 - decrease corrosion
 - increase life duration
 - improve temperature dependence of viscosity
 - improve particle transport

Advantages:

- ් Good lubrication
- High viscosity (good for sealing, bad for losses)

් Cheap

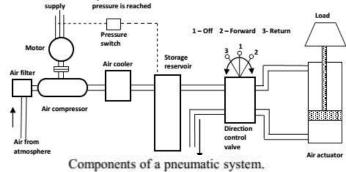
Disadvantages:

- ♀ Inflammable
- ♀ Environmental pollution

3. Not inflammable fluids:

- Contains water
 - Does not contain water
 - o mines, airplane production, casting, rolling, where there is explosion and fire danger
 - o Water-oil emulsions (oil synthetic) or water-free synthetic liquids

Disadvantages:


- ℽ Higher density, higher losses, more inclination to cavitation
- \heartsuit Limited operational temperature < 55 °C
- ℽ Worse lubrication characteristics, reduction of maximum load
- ℽ Worse de-aeration characteristics
- ℽ Sometimes chemically aggressive against sealing materials

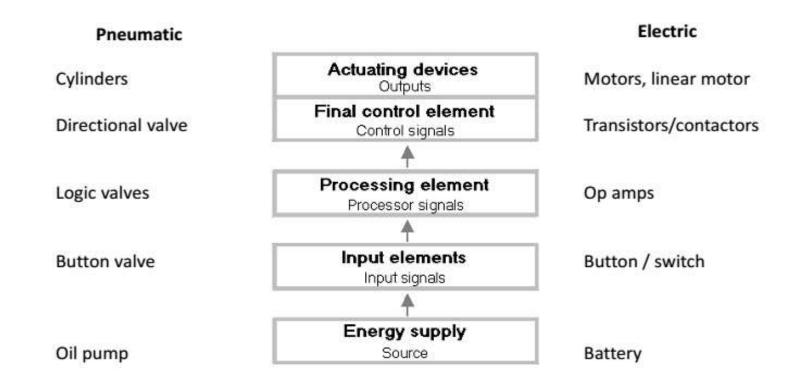
4. Biologically degradable fluids:

- Natural
- Synthetic
 - o Environmental protection, water protection
 - o Agricultural machines
 - o Mobile hydraulics
 - Characteristics similar to mineral oils but much more expensive.
 - If the trend continues its usage expands, price will drop.

BASIC COMPONENTS OF A PNEUMATIC SYSTEM

- A pneumatic system carries power by employing compressed gas, generally air, as a fluid for transmitting energy from an energygenerating source to an energy-using point to accomplish useful work. Figure 1.3 shows a simple circuit of a pneumatic system with basic components.
- Air is drawn from the atmosphere through an air filter and raised to required pressure by an air compressor. As the pressure rises, the temperature also rises; hence, an air cooler is provided to cool the air with some preliminary treatment to remove the moisture. The treated pressurized air then needs to get stored to maintain the pressure. With the storage reservoir, a pressure switch is fitted to start and stop the electric motor when pressure falls and respectively.

COMPARISON HYDRAULIC & PNEUMATIC SYSTEMS


S. No.	Hydraulic System	Pneumatic System
1.	It employs a pressurized liquid as a fluid	It employs a compressed gas, usually air, as a fluid
2.	An oil hydraulic system operates at pressures up to 700 bar	A pneumatic system usually operates at 5–10 bar
3.	Generally designed as closed system	Usually designed as open system
4.	The system slows down when leakage occurs	Leakage does not affect the system much
5.	Valve operations are difficult	Valve operations are easy
6.	Heavier in weight	Lighter in weight
7.	Pumps are used to provide pressurized liquids	Compressors are used to provide compressed gases
8.	Automatic lubrication is provided	Special arrangements for lubrication are needed

COMPARISON OF DIFFERENT POWER SYSTEMS

Property	Mechanical	Electrical	Pneumatic	Hydraulic
Input energy source	I C engines Electric motor	I C engines Water/gas turbines	I C engines Pressure tank	I C engines Electric motor Air turbine
Energy transfer element	Levers, gears, shafts	Electrical cables and magnetic field	Pipes and hoses	Pipes and hoses
Energy carrier	Rigid and elastic objects	Flow of electrons	Air	Hydraulic liquids
Power-to-weight ratio	Poor	Fair	Best	Best
Torque/inertia	Poor	Fair	Good	Best
Stiffness	Good	Poor	Fair	Best
Response speed	Fair	Best	Fair	Good
Relative cost	Best	Best	Good	Fair
Control	Fair	Best	Good	Good
Motion type	Mainly rotary	Mainly rotary	Linear or rotary	Linear or rotary

COMPARISION PNEUMATIC &ELECTRIC SYSTEM

Comparison

Future of Fluid Power Industry in India

- The automation market in India is estimated to be 1/10ththat of China. If India has to become one of the leading economies in the world, based on manufacturing, it will have to attain higher technological standards and higher level of automation in manufacturing.
- In the past 30 years, fluid power technology rose as an important industry. With increasing emphasis on automation, quality control, safety and more efficient and green energy systems, fluid power technology should continue to expand in India.
- Fluid power industry is gaining a lot of importance in Indian industry. According to a recent survey, it has shown a growth of 20% over the last 10 years and the size of market is estimated to be close to 5000 crores per annum. This makes it a sizable industry segment in India. The growth rate of this industry in India is typically about twice the growth of economy.
- The reasons for this are three-fold:
- 1. As the economy grows, this industry grows.
- 2. There is a lot of automation and conversion into more sophisticated manufacturing methods which increases the rate.
- 3. One of the interesting things happening in this industry is that India is becoming an attractive destination for manufacturing and outsourcing of some of the products.
- So these three aspects together create a situation where the growth of this industry is twi ce the growth of GDP in India.
- The fluid power sector in India consists of many sophisticated Indian industries and partnership with number of global fluid power technology leaders that include Festo, Rexroth, Vickers, Eaton, Parker Hannifin, Norgen, , Saucer Donfos, Yuken, Siemens, Shamban, Pall and Gates, , Rotex, , Janatics, Maxwell, Wipro Dynamatic Technologies and many more.