
8085 INTRODUCTION8085 INTRODUCTION

The features of INTEL 8085 are :

• It is an 8 bit processor.

• It is a single chip N-MOS device with 40 pins.

• It has multiplexed address and data bus.(AD0-AD7).

• It works on 5 Volt dc power supply.

• The maximum clock frequency is 3 MHz while
minimum frequency is 500kHz.

• It provides 74 instructions with 5 different addressing
modes.

8085 INTRODUCTION8085 INTRODUCTION

• It provides 16 address lines so it can access 2It provides 16 address lines so it can access 2^̂16 =64K 16 =64K
 bytes of memory. bytes of memory.

• It generates 8 bit I/O address so it can access 2It generates 8 bit I/O address so it can access 2^8=256 ^8=256
input ports.input ports.

• It provides 5 hardware interrupts:TRAP, RST 5.5, RST It provides 5 hardware interrupts:TRAP, RST 5.5, RST
6.5, RST 7.5,INTR.6.5, RST 7.5,INTR.

• It provides Acc ,one flag register ,6 general purpose It provides Acc ,one flag register ,6 general purpose
registers and two special purpose registers(SP,PC).registers and two special purpose registers(SP,PC).

• It provides serial lines SID ,SOD.So serial peripherals can It provides serial lines SID ,SOD.So serial peripherals can
be interfaced with 8085 directly.be interfaced with 8085 directly.

8085 PIN DIAGRAM8085 PIN DIAGRAM

8085 PIN DESCRIPTION8085 PIN DESCRIPTION

Some important pins are :Some important pins are :
• ADAD00-AD-AD77: Multiplexed Address and data lines.: Multiplexed Address and data lines.

• AA88-A-A1515: Tri-stated higher order address lines.: Tri-stated higher order address lines.

• ALEALE: Address latch enable is an output signal.It goes : Address latch enable is an output signal.It goes
high when operation is started by processor .high when operation is started by processor .

• S0,S1S0,S1: These are the status signals used to indicate type : These are the status signals used to indicate type
of operation. of operation.

• RDRD¯̄:: Read is active low input signal used to read data Read is active low input signal used to read data
from I/O device or memory.from I/O device or memory.

• WRWR¯̄::Write is an active low output signal used write data Write is an active low output signal used write data
on memory or an I/O device.on memory or an I/O device.

8085 PIN DESCRIPTION8085 PIN DESCRIPTION

 READYREADY:This an output signal used to check the :This an output signal used to check the
status of output device.If it is low, status of output device.If it is low, µµP will WAIT until P will WAIT until
it is high.it is high.

 TRAPTRAP:It is an Edge triggered highest priority , non :It is an Edge triggered highest priority , non
mask able interrupt. After TRAP, restart occurs and mask able interrupt. After TRAP, restart occurs and
execution starts from address 0024H. execution starts from address 0024H.

 RST5.5,6.5,7.5RST5.5,6.5,7.5:These are maskable interrupts and :These are maskable interrupts and
have low priority than TRAP.have low priority than TRAP.

 INTRINTR¯&INTA¯&INTA:INTR is a interrupt request signal after :INTR is a interrupt request signal after
which µP generates INTA or interrupt acknowledge which µP generates INTA or interrupt acknowledge
signal.signal.

 IO/MIO/M¯̄::This is output pin or signal used to indicate This is output pin or signal used to indicate
whether 8085 is working in I/O mode(IO/M¯=1) or whether 8085 is working in I/O mode(IO/M¯=1) or
Memory mode(IO/M¯=0).Memory mode(IO/M¯=0).

8085 PIN DESCRIPTION8085 PIN DESCRIPTION
 HOLD&HLDAHOLD&HLDA:HOLD is an input signal .When :HOLD is an input signal .When µµP receives P receives

HOLD signal it completes current machine cycle and HOLD signal it completes current machine cycle and
stops executing next instruction.In response to HOLD stops executing next instruction.In response to HOLD µµP P
generates HLDA that is HOLD Acknowledge signal.generates HLDA that is HOLD Acknowledge signal.

 RESET INRESET IN¯:¯:This is input signal.When This is input signal.When RESET INRESET IN¯ is low ¯ is low
µp restarts and starts executing from location 0000H.µp restarts and starts executing from location 0000H.

 SIDSID: Serial input data is input pin used to accept serial 1 : Serial input data is input pin used to accept serial 1
bit data .bit data .

 XX11XX22 :These are clock input signals and are connected to :These are clock input signals and are connected to
external LC,or RC circuit.These are divide by two so if 6 external LC,or RC circuit.These are divide by two so if 6
MHz is connected to XMHz is connected to X11XX22,, the operating frequency the operating frequency
becomes 3 MHz.becomes 3 MHz.

 VCC&VSSVCC&VSS:Power supply VCC=+ -5Volt& VSS=-GND :Power supply VCC=+ -5Volt& VSS=-GND
reference.reference.

8085 ARCHITECTURE8085 ARCHITECTURE

Arithmetic and Logical group Arithmetic and Logical group

AccumulatorAccumulator: It is 8 bit general purpose register.: It is 8 bit general purpose register.

• It is connected to ALU. It is connected to ALU.

• So most of the operations are done in Acc.So most of the operations are done in Acc.
Temporary registerTemporary register: It is not available for user: It is not available for user

• All the arithmetic and logical operations are done in All the arithmetic and logical operations are done in
the temporary register but user can’t access it.the temporary register but user can’t access it.

FlagFlag: It is a group of 5 flip flops used to know status of : It is a group of 5 flip flops used to know status of
various operations done.various operations done.

• The Flag Register along with Accumulator is called The Flag Register along with Accumulator is called
PSWPSW

or Program Status Word.or Program Status Word.

Arithmetic and Logical groupArithmetic and Logical group

Flag Register is given by:Flag Register is given by:

SS:Sign flag is set when result of an operation is negative.:Sign flag is set when result of an operation is negative.
ZZ:Zero flag is set when result of an operation is 0.:Zero flag is set when result of an operation is 0.
AcAc:Auxiliary carry flag is set when there is a carry out of :Auxiliary carry flag is set when there is a carry out of

lower nibble or lower four bits of the operation.lower nibble or lower four bits of the operation.
CYCY:Carry flag is set when there is carry generated by an :Carry flag is set when there is carry generated by an

operation.operation.
PP:Parity flag is set when result contains even number of :Parity flag is set when result contains even number of

1’s.1’s.
Rest are don’t care flip flops.Rest are don’t care flip flops.

 S Z X AC X P X CY

Register GroupRegister Group

• Temporary registers (W,Z):Temporary registers (W,Z):These are not available for These are not available for
user. These are loaded only when there is an user. These are loaded only when there is an
operation being performed.operation being performed.

• General purposeGeneral purpose:There are six general purpose :There are six general purpose
registers in 8085 namely B,C,D,E,H,L.These are used registers in 8085 namely B,C,D,E,H,L.These are used
for various data manipulations.for various data manipulations.

• Special purpose Special purpose :There are two special purpose :There are two special purpose
registers in 8085:registers in 8085:

• SPSP :Stack Pointer. :Stack Pointer.

• PCPC:Program Counter.:Program Counter.

Register GroupRegister Group

Stack PointerStack Pointer: This is a temporary storage memory 16 bit : This is a temporary storage memory 16 bit
register. Since there are only 6 general purpose registers, register. Since there are only 6 general purpose registers,
there is a need to reuse them . there is a need to reuse them .

• Whenever stack is to be used previous values are PUSHED Whenever stack is to be used previous values are PUSHED
on stack and then after the program is over these values on stack and then after the program is over these values
are POPED back.are POPED back.

Program CounterProgram Counter: It is 16 bit register used to point the : It is 16 bit register used to point the
location from which the next instruction is to be fetched.location from which the next instruction is to be fetched.

• When a single byte instruction is executed PC is When a single byte instruction is executed PC is
automatically incremented by 1.automatically incremented by 1.

• Upon reset PC contents are set to 0000H and next Upon reset PC contents are set to 0000H and next
instruction is fetched onwards.instruction is fetched onwards.

INSTRUCTION INSTRUCTION
REGISTER,DECODER & CONTROLREGISTER,DECODER & CONTROL

• Instruction registerInstruction register:When an instruction is fetched , it :When an instruction is fetched , it
is executed in instruction register.This register takes is executed in instruction register.This register takes
the Opcode value only.the Opcode value only.

• Instruction decoderInstruction decoder: It decodes the instruction from : It decodes the instruction from
instruction register and then to control block.instruction register and then to control block.

• Timing and controlTiming and control:This is the control section of :This is the control section of

µP.µP.It accepts clock input . It accepts clock input .

INTERRUPT CONTROLINTERRUPT CONTROL

• It accepts different interrupts like TRAP It accepts different interrupts like TRAP
INT5.5,6.5,7.5and INTR.INT5.5,6.5,7.5and INTR.

SERIAL IO CONTROL
GROUP

• It is used to accept the serial 1 bit data by
using SID and SOD signals and it can be
performed by using SIM & RIM
instructions.

INSTRUCTIONS SET OF 8085INSTRUCTIONS SET OF 8085

DATA TRANSFER GROUP

MOV Rd, Rs.(Move data from Rs to Rd).

Example:

MOV C,B. Move the content of register B to C.

Initially After execution

B=10H. B=10H.

C=20H. C=10H.

Flags Affected :No flags affected.

Addressing mode: Register.

DATA TRANSFER GROUPDATA TRANSFER GROUP

MOV Rd, MMOV Rd, M (Move data from Memory to Rd). (Move data from Memory to Rd).

Example:Example:

MOV C,M. Move the content of Memory i.e. “H or L” to C.MOV C,M. Move the content of Memory i.e. “H or L” to C.

Suppose the Data at memory pointed By HL pair at C200H Suppose the Data at memory pointed By HL pair at C200H
is 10H.is 10H.

Initially After execution Initially After execution

H=C2,L=00,C=30H H=C2,L=00,C=10H.H=C2,L=00,C=30H H=C2,L=00,C=10H.
Flags Affected :No flags affected.Flags Affected :No flags affected.
Addressing mode: Indirect.Addressing mode: Indirect.

DATA TRANSFER GROUPDATA TRANSFER GROUP

MVI R, DataMVI R, Data.(Move Immediate data to Register)..(Move Immediate data to Register).
Example:Example:
MVI B, 30H. (Move the data 30 H to Register B)MVI B, 30H. (Move the data 30 H to Register B)
Initially After executionInitially After execution

B=40H B=30HB=40H B=30H
Flags Affected :No flags affected.Flags Affected :No flags affected.
Addressing mode: Immediate.Addressing mode: Immediate.

DATA TRANSFER GROUPDATA TRANSFER GROUP

LXI Rp,16 bitLXI Rp,16 bit .(Load 16 bit data to Register pair .(Load 16 bit data to Register pair
Immediate).Immediate).

Example:Example:
LXI SP, C200H. (Load Stack pointer with C200H).LXI SP, C200H. (Load Stack pointer with C200H).
Initially After executionInitially After execution
SP=C800H SP=C200H.SP=C800H SP=C200H.
Flags Affected :No flags affected.Flags Affected :No flags affected.
Addressing mode: Immediate.Addressing mode: Immediate.

DATA TRANSFER GROUPDATA TRANSFER GROUP

STA addressSTA address.(Store Acc data to address)..(Store Acc data to address).
Example:Example:
STA C200H. (Move the data from Acc to C200H).STA C200H. (Move the data from Acc to C200H).
Suppose in Acc the data is 10H.Suppose in Acc the data is 10H.
Initially After executionInitially After execution
A=10H, C200=20H C200=10H , A=10HA=10H, C200=20H C200=10H , A=10H
Flags Affected :No flags affected.Flags Affected :No flags affected.
Addressing mode: Direct.Addressing mode: Direct.

DATA TRANSFER GROUPDATA TRANSFER GROUP

LHLD addressLHLD address.(Load HL pair with data from address)..(Load HL pair with data from address).
Example:Example:
LHLD C200H. (Move the data from C200 to HL pair).LHLD C200H. (Move the data from C200 to HL pair).
Suppose at C200 the data is 20H,30H .Suppose at C200 the data is 20H,30H .
Initially After executionInitially After execution
H=10H,L=20H H=20H,L=30H.H=10H,L=20H H=20H,L=30H.
C2=20H,00=30H C2=20H,00=30H C2=20H,00=30H C2=20H,00=30H

Flags Affected :No flags affected. Flags Affected :No flags affected.
Addressing mode: Direct.Addressing mode: Direct.

DATA TRANSFER GROUPDATA TRANSFER GROUP

• XCHGXCHG (Exchange the data from HL pair to DE pair) (Exchange the data from HL pair to DE pair)
Example : XCHG Example : XCHG
Initially After Initially After

execution execution
H=20H,L=30H, H=40H,L=70H. H=20H,L=30H, H=40H,L=70H.
D=40H,E=70H. D=20H,E=30H.D=40H,E=70H. D=20H,E=30H.
Flags Affected :No flags affected. Flags Affected :No flags affected.
Addressing mode: Register.Addressing mode: Register.

DATA TRANSFER GROUPDATA TRANSFER GROUP

IN 8 bit addressIN 8 bit address (Move the data from address to Acc) (Move the data from address to Acc)
Example: IN 80HExample: IN 80H
Move the data from 80H port address to Accumulator.Move the data from 80H port address to Accumulator.
Suppose data at 80H is 39H.Suppose data at 80H is 39H.
Initially After Initially After

execution execution
A=20H. A=39HA=20H. A=39H
Flags Affected :No flags affected. Flags Affected :No flags affected.
Addressing mode: Direct.Addressing mode: Direct.

DATA TRANSFER GROUPDATA TRANSFER GROUP

OUT 8 bit addressOUT 8 bit address (Move the data from Acc to address) (Move the data from Acc to address)
Example: OUT 80HExample: OUT 80H
Move the data from Acc to port address 80H.Move the data from Acc to port address 80H.
Suppose data at Acc is 39H.Suppose data at Acc is 39H.
Initially After Initially After

execution execution
A=39H. 80=10H. A=39H. 80=10H.

A=39H,80=39H.A=39H,80=39H.
Flags Affected :No flags affected. Flags Affected :No flags affected.
Addressing mode: Direct.Addressing mode: Direct.

DATA TRANSFER GROUPDATA TRANSFER GROUP

• Example:Write a program to exchange contents of Example:Write a program to exchange contents of
memory location D000H to D001Hmemory location D000H to D001H

LDA D000H Load Acc with data from LDA D000H Load Acc with data from
D000 D000

MOV B,A Move the data to B MOV B,A Move the data to B

LDA D0001H Load Acc with data from LDA D0001H Load Acc with data from
D001 D001

STA 2000H Store Acc data at D000STA 2000H Store Acc data at D000
MOV A,B Move B’s data to A MOV A,B Move B’s data to A

STA 2001H Store data from D000 to STA 2001H Store data from D000 to

D0001 D0001
RST1 Stop. RST1 Stop.

ARITHMETIC GROUPARITHMETIC GROUP

ADD RADD R (ADD register content with Acc and result in A). (ADD register content with Acc and result in A).

Example:Example:

ADD C. (ADD the content of C with A).ADD C. (ADD the content of C with A).

Suppose the Data at C register is 10H.Suppose the Data at C register is 10H.

Initially After executionInitially After execution

. C= 10H ,A=10H A=20H,C=10H.. C= 10H ,A=10H A=20H,C=10H.
Flags Affected :All flags are modified.Flags Affected :All flags are modified.
Addressing mode: RegisterAddressing mode: Register

ARITHMEIC GROUPARITHMEIC GROUP

ADD MADD M(ADD H or L Reg content with Acc and result in A).(ADD H or L Reg content with Acc and result in A).

Example:Example:

ADD M. (ADD the content of HL with A).ADD M. (ADD the content of HL with A).

 Suppose the Data at memory pointed by HL register Suppose the Data at memory pointed by HL register
1020H is 10H.1020H is 10H.

Initially After executionInitially After execution

. H= 10H ,L=20H . H=10H,L=20H. . H= 10H ,L=20H . H=10H,L=20H.

 A=20H,C=10H. A=30H.A=20H,C=10H. A=30H.
Flags Affected :All flags are modified.Flags Affected :All flags are modified.
Addressing mode: Register Indirect.Addressing mode: Register Indirect.

ARITHMETIC GROUPARITHMETIC GROUP

ADI DataADI Data(ADD immediate data with Acc and result in A).(ADD immediate data with Acc and result in A).

Example:Example:

ADI 30H. (ADD 30H with A).ADI 30H. (ADD 30H with A).

Initially After executionInitially After execution

A=20H, A=50H.A=20H, A=50H.
Flags Affected :All flags are modified.Flags Affected :All flags are modified.
Addressing mode: Immediate.Addressing mode: Immediate.

ARITHMETIC GROUPARITHMETIC GROUP

ADC RADC R (ADD register content with Acc and carry and result (ADD register content with Acc and carry and result
in A).in A).

Example:Example:

ADC C. (ADD the content of C with A with carry).ADC C. (ADD the content of C with A with carry).

Suppose the Data at C register is 10H and carry is 01H.Suppose the Data at C register is 10H and carry is 01H.

Initially After executionInitially After execution

. C= 10H ,A=10H A=21H,C=10H.. C= 10H ,A=10H A=21H,C=10H.
Flags Affected :All flags are modified.Flags Affected :All flags are modified.
Addressing mode: RegisterAddressing mode: Register

ARITHMETIC GROUPARITHMETIC GROUP
Example: Example: Write a program to perform 16 bit addition of Write a program to perform 16 bit addition of

1234H& 4321H. Store answer at H & L registers1234H& 4321H. Store answer at H & L registers..
MVI B,21H B=21HMVI B,21H B=21H
MVI A,34H A=34HMVI A,34H A=34H
MVI C,43H C=43H MVI C,43H C=43H
MVI D,12H D=12HMVI D,12H D=12H
ADD B A=34+21HADD B A=34+21H
MOV L,A L=55HMOV L,A L=55H
MOV A,C A=43HMOV A,C A=43H
ADC D A=43+12HADC D A=43+12H
MOV H,A H=55HMOV H,A H=55H
RST1 STOP.RST1 STOP.

ARITHMETIC GROUPARITHMETIC GROUP

SUB RSUB R (Subtract register content from Acc and result in A). (Subtract register content from Acc and result in A).

Example:Example:

SUB B. (Subtract the content of B from A).SUB B. (Subtract the content of B from A).

Suppose the Data at B register is 10H .Suppose the Data at B register is 10H .

Initially After executionInitially After execution

. B= 10H ,A=20H A=10H,B=10H.. B= 10H ,A=20H A=10H,B=10H.
Flags Affected :All flags are modified.Flags Affected :All flags are modified.
Addressing mode: RegisterAddressing mode: Register

ARITHMETIC GROUPARITHMETIC GROUP

SBB RSBB R (Subtract register content from Acc with borrow and (Subtract register content from Acc with borrow and
result in A).result in A).

Example:Example:

SBB B. (Subtract the content of B from A with borrow).SBB B. (Subtract the content of B from A with borrow).

Suppose the Data at B register is 10H and borrow is 01H .Suppose the Data at B register is 10H and borrow is 01H .

Initially After executionInitially After execution

. B= 0FH ,A=20H A=10H,B=0FH.. B= 0FH ,A=20H A=10H,B=0FH.
Flags Affected :All flags are modified.Flags Affected :All flags are modified.
Addressing mode: RegisterAddressing mode: Register

ARITHMETIC GROUPARITHMETIC GROUP

SUI DataSUI Data(Subtract immediate data from Acc and result in A (Subtract immediate data from Acc and result in A
).).

Example:Example:

SUI 30H. (Subtract 30H from A).SUI 30H. (Subtract 30H from A).

Initially After executionInitially After execution

A=80H, A=50H.A=80H, A=50H.
Flags Affected :All flags are modified.Flags Affected :All flags are modified.
Addressing mode: ImmediateAddressing mode: Immediate

ARITHMETIC GROUPARITHMETIC GROUP

Example: Example: Subtract data of C800 H from C200H.Store the Subtract data of C800 H from C200H.Store the
result at 2C00.result at 2C00.

LDA C800HLDA C800H
MOV B,AMOV B,A
LDA C200HLDA C200H
SUB BSUB B
STA 2C00HSTA 2C00H
RST1 RST1

ARITHMETIC GROUPARITHMETIC GROUP

DAD RpDAD Rp (Add specified register pair with HL pair) (Add specified register pair with HL pair)
Example:DAD D.(Add the content of E with L and that Example:DAD D.(Add the content of E with L and that

of D with H register and result in HL pair)of D with H register and result in HL pair)
• Suppose the content of HL pair is H=20H ,L=40H Suppose the content of HL pair is H=20H ,L=40H

and DE pair is D=30H, E=10H.and DE pair is D=30H, E=10H.
Initially After executionInitially After execution
H=20H ,L=40H H=50H ,L=50HH=20H ,L=40H H=50H ,L=50H
D=30H, E=10H D=30H, E=10H D=30H, E=10H D=30H, E=10H
Flags Affected :Only carry flag is modified.Flags Affected :Only carry flag is modified.
Addressing mode: Register.Addressing mode: Register.

ARITHMETIC GROUPARITHMETIC GROUP

DAA DAA (Decimal adjust accumulator) (Decimal adjust accumulator)
Example:Example:
MVI A,12HMVI A,12H
ADI 39H ADI 39H
DAA .DAA .
 This instruction is used to store result in BCD form.If This instruction is used to store result in BCD form.If

lower nibble is greater than 9 ,6 is added while if upper lower nibble is greater than 9 ,6 is added while if upper
nibble is greater than 9,6 is added to it to get BCD nibble is greater than 9,6 is added to it to get BCD
result.result.

Initially After executionInitially After execution
12+39=4B 12+39=51 in BCD form.12+39=4B 12+39=51 in BCD form.
 Flags Affected :All flags are modified.Flags Affected :All flags are modified.
Addressing mode: RegisterAddressing mode: Register

ARITHMETIC GROUPARITHMETIC GROUP

INR RINR R (Increment register content by 1). (Increment register content by 1).

Example:Example:

INR C. (Increment the content of C by 1).INR C. (Increment the content of C by 1).

Suppose the Data at C register is 10H.Suppose the Data at C register is 10H.

Initially After executionInitially After execution

 C= 10H C=11H.C= 10H C=11H.
Flags Affected :All flags are modified except carry flag.Flags Affected :All flags are modified except carry flag.
Addressing mode: Register.Addressing mode: Register.

ARITHMETIC GROUPARITHMETIC GROUP

DCR RDCR R (Decrement register content by 1). (Decrement register content by 1).

Example:Example:

DCR C. (Decrement the content of C by 1).DCR C. (Decrement the content of C by 1).

Suppose the Data at C register is 10H.Suppose the Data at C register is 10H.

Initially After executionInitially After execution

 C= 10H C=0FH.C= 10H C=0FH.
Flags Affected :All flags are modified except carry flag.Flags Affected :All flags are modified except carry flag.
Addressing mode: Register.Addressing mode: Register.

ARITHMETIC GROUPARITHMETIC GROUP

INX RpINX Rp (Increment register pair content by 1). (Increment register pair content by 1).

Example:Example:

INX SP (Increment the content of Stack pointer pair by 1).INX SP (Increment the content of Stack pointer pair by 1).

INX B. (Increment the content of BC pair by 1).INX B. (Increment the content of BC pair by 1).

Suppose the Data at BC register is 1010H and SP is C200HSuppose the Data at BC register is 1010H and SP is C200H

Initially After executionInitially After execution

 BC= 1010H BC=1011H.BC= 1010H BC=1011H.

SP=C200H SP=C201H. SP=C200H SP=C201H.
Flags Affected :No flags are modified.Flags Affected :No flags are modified.
Addressing mode: Register.Addressing mode: Register.

LOGICAL GROUPLOGICAL GROUP

ANA RANA R (Logically AND register content with Acc and result (Logically AND register content with Acc and result
in A).in A).

Example:Example:

ANA C (AND the content of C with A).ANA C (AND the content of C with A).

Suppose the Data at C register is 10H.Suppose the Data at C register is 10H.

Initially After executionInitially After execution

 C= 10H ,A=10H A=10H,C=10H.C= 10H ,A=10H A=10H,C=10H.
Flags Affected :S,Z,P are modified Cy=reset,AC=set.Flags Affected :S,Z,P are modified Cy=reset,AC=set.
Addressing mode:Register.Addressing mode:Register.

LOGICAL GROUPLOGICAL GROUP

ANI DataANI Data (Logically AND immediate data with Acc and (Logically AND immediate data with Acc and
result in A).result in A).

Example:Example:

ANI 10H (AND 10H with A).ANI 10H (AND 10H with A).

Initially After executionInitially After execution

A=10H A=10HA=10H A=10H
Flags Affected :S,Z,P are modified Cy=reset,AC=set.Flags Affected :S,Z,P are modified Cy=reset,AC=set.
Addressing mode: Immediate.Addressing mode: Immediate.

LOGICAL GROUPLOGICAL GROUP

ORA RORA R (Logically OR register content with Acc and result in (Logically OR register content with Acc and result in
A5).A5).

Example:Example:

ORA C (OR the content of C with A).ORA C (OR the content of C with A).

Suppose the Data at C register is 17H.Suppose the Data at C register is 17H.

Initially After executionInitially After execution

 C= 17H ,A=10H A=17H,C=17H.C= 17H ,A=10H A=17H,C=17H.
Flags Affected :S,Z,P are modified Cy=reset,AC=reset.Flags Affected :S,Z,P are modified Cy=reset,AC=reset.
Addressing mode:Register.Addressing mode:Register.

LOGICAL GROUPLOGICAL GROUP

ORI DataORI Data (Logically OR immediate data with Acc and result (Logically OR immediate data with Acc and result
in A).in A).

Example:Example:

ORI 10H (OR 10H with A).ORI 10H (OR 10H with A).

Initially After executionInitially After execution

A=30H A=30HA=30H A=30H
Flags Affected :S,Z,P are modified Cy=reset,AC=set.Flags Affected :S,Z,P are modified Cy=reset,AC=set.
Addressing mode: Immediate.Addressing mode: Immediate.

LOGICAL GROUPLOGICAL GROUP

XRA RXRA R (Logically XOR register content with Acc and result (Logically XOR register content with Acc and result
in A).in A).

Example:Example:

XRA C (XOR the content of C with A).XRA C (XOR the content of C with A).

Suppose the Data at C register is 17H.Suppose the Data at C register is 17H.

Initially After executionInitially After execution

 C= 17H ,A=10H A=07H,C=17H.C= 17H ,A=10H A=07H,C=17H.
Flags Affected :S,Z,P are modified Cy=reset,AC=reset.Flags Affected :S,Z,P are modified Cy=reset,AC=reset.
Addressing mode:Register.Addressing mode:Register.

LOGICAL GROUPLOGICAL GROUP

CMP RCMP R (Compare register content with Acc and result in (Compare register content with Acc and result in
A).A).

Example:Example:

CMP C (Compare the content of C with A).CMP C (Compare the content of C with A).

Suppose the Data at C register is 17H.Suppose the Data at C register is 17H.

Initially After executionInitially After execution

 C= 10H ,A=17H A=17H,C=17H.C= 10H ,A=17H A=17H,C=17H.
Flags Affected :S=0,Z=0,P=0, Cy=reset,AC=reset.Flags Affected :S=0,Z=0,P=0, Cy=reset,AC=reset.
Addressing mode:Register.Addressing mode:Register.

LOGICAL GROUPLOGICAL GROUP

CPI DataCPI Data (Compare immediate data with Acc). (Compare immediate data with Acc).

Example:Example:

CPI 10H (Compare the content of C with A).CPI 10H (Compare the content of C with A).

Initially After executionInitially After execution

A=17H A=17H.A=17H A=17H.
Flags Affected :S=0,Z=0,P=0, Cy=reset,AC=reset.Flags Affected :S=0,Z=0,P=0, Cy=reset,AC=reset.
Addressing mode:Immediate.Addressing mode:Immediate.

LOGICAL GROUPLOGICAL GROUP

RLC (Rotate accumulator left).RLC (Rotate accumulator left).

Example:Example:

MOV A,03H.MOV A,03H.

RLC (Rotate accumulator left).RLC (Rotate accumulator left).

Initially After executionInitially After execution

A=03H A=06H.A=03H A=06H.
Flags Affected :Only carry flag is affected.Flags Affected :Only carry flag is affected.
Addressing mode:Implied.Addressing mode:Implied.

LOGICAL GROUPLOGICAL GROUP

RALRAL (Rotate accumulator left with carry). (Rotate accumulator left with carry).

Example:Example:

MOV A,03H.MOV A,03H.

RAL (Rotate accumulator left with carry).RAL (Rotate accumulator left with carry).

Initially After executionInitially After execution

A=03H , carry =01H A=07H.A=03H , carry =01H A=07H.
Flags Affected :Only carry flag is affected.Flags Affected :Only carry flag is affected.
Addressing mode:Implied.Addressing mode:Implied.

LOGICAL GROUPLOGICAL GROUP

RRCRRC (Rotate accumulator right). (Rotate accumulator right).

Example:Example:

MOV A,03H.MOV A,03H.

RRC (Rotate accumulator right).RRC (Rotate accumulator right).

Initially After executionInitially After execution

A=03H , A=81H.A=03H , A=81H.
Flags Affected :Only carry flag is affected.Flags Affected :Only carry flag is affected.
Addressing mode:Implied.Addressing mode:Implied.

LOGICAL GROUPLOGICAL GROUP

Write a program to reset last 4 bits of the number 32HWrite a program to reset last 4 bits of the number 32H
Store result at C200HStore result at C200H..
MVI A, 32H A=32HMVI A, 32H A=32H
ANI F0H 00110010 AND ANI F0H 00110010 AND

11110001111000
 =00110000=30H =00110000=30H

STA C200H. C200=30H STA C200H. C200=30H
RST1 StopRST1 Stop

BRANCH GROUPBRANCH GROUP

JMP addressJMP address(Unconditional jump to address)(Unconditional jump to address)
Example:Example:
JMP C200H.JMP C200H.

• After this instruction the Program Counter is loaded with After this instruction the Program Counter is loaded with
this location and starts executing and the contents of PC this location and starts executing and the contents of PC
are loaded on Stack.are loaded on Stack.

Flags Affected :No Flags are affected.Flags Affected :No Flags are affected.
Addressing mode:Immediate.Addressing mode:Immediate.

CALL address(Unconditional CALL from CALL address(Unconditional CALL from
address)address)

Example:Example:
CALL C200H.CALL C200H.

• After this instruction the Program Counter is loaded with After this instruction the Program Counter is loaded with
this location and starts executing and the contents of PC this location and starts executing and the contents of PC
are loaded on Stack.are loaded on Stack.

Flags Affected :No Flags are affected.Flags Affected :No Flags are affected.
Addressing mode:ImmediateAddressing mode:Immediate

BRANCH GROUPBRANCH GROUP

Conditional Jump Instructions.Conditional Jump Instructions.

• JC (Jump if Carry flag is set)JC (Jump if Carry flag is set)

• JNC (Jump if Carry flag is reset)JNC (Jump if Carry flag is reset)

• JZ (Jump if zero flag set)JZ (Jump if zero flag set)

• JNZ (Jump if zero flag is reset)JNZ (Jump if zero flag is reset)

• JPE (Jump if parity flag is set)JPE (Jump if parity flag is set)

• JPO (Jump if parity odd or P flag is reset)JPO (Jump if parity odd or P flag is reset)

• JP (Jump if sign flag reset)JP (Jump if sign flag reset)

• JM (Jump if sign flag is set or minus)JM (Jump if sign flag is set or minus)

BRANCH GROUPBRANCH GROUP

Conditional Call Instructions.Conditional Call Instructions.

• CC (Call if Carry flag is set)CC (Call if Carry flag is set)

• CNC (Call if Carry flag is reset)CNC (Call if Carry flag is reset)

• CZ (Call if zero flag set)CZ (Call if zero flag set)

• CNZ (Call if zero flag is reset)CNZ (Call if zero flag is reset)

• CPE (Call if parity flag is set)CPE (Call if parity flag is set)

• CPO (Call if parity odd or P flag is reset)CPO (Call if parity odd or P flag is reset)

• CP (Call if sign flag reset)CP (Call if sign flag reset)

• CM (Call if sign flag is set or minus)CM (Call if sign flag is set or minus)

BRANCH GROUPBRANCH GROUP

RETRET (Return from subroutine) (Return from subroutine)
Example:Example:
MOV A,CMOV A,C
RETRET

• After this instruction the Program Counter POPS PUSHED After this instruction the Program Counter POPS PUSHED
contents from stack and starts executing from that contents from stack and starts executing from that
address .address .

Flags Affected :No Flags are affected.Flags Affected :No Flags are affected.
Addressing mode:Register indirect . Addressing mode:Register indirect .

BRANCH GROUPBRANCH GROUP

RST RST (Restart instruction)(Restart instruction)
Example:Example:
MOV A,CMOV A,C
RST 1.RST 1.

• After this instruction the Program Counter goes to After this instruction the Program Counter goes to
address 0008H and starts executing from that address .address 0008H and starts executing from that address .

Flags Affected :No Flags are affected.Flags Affected :No Flags are affected.
Addressing mode:Register indirect.Addressing mode:Register indirect.

BRANCH GROUPBRANCH GROUP

The addresses of the respective RST commands are:The addresses of the respective RST commands are:

Instruction Address

RST 0 0000H

RST 1 0008H

RST 2 0010H

RST 3 0018H

RST 4 0020H

RST 5 0028H

RST 6 0030H
RST 7 0038H

STACK AND MACHINE STACK AND MACHINE
CONTROLCONTROL
PUSH Rp.(Push register pair contents on stack).PUSH Rp.(Push register pair contents on stack).
Example:LXI SP FFFFH.Example:LXI SP FFFFH.
 PUSH H. (Move the content of HL pair on Stack).PUSH H. (Move the content of HL pair on Stack).
• Suppose at HL pair the data is H= 20H,L= 30H & SP is Suppose at HL pair the data is H= 20H,L= 30H & SP is

initialized at FFFFHinitialized at FFFFH
Initially After executionInitially After execution
H=20H,L=30H H=20H,L=30H.H=20H,L=30H H=20H,L=30H.
SP=FFFF H SP=FFFF H

FFFD=30H,FFFE=20H FFFD=30H,FFFE=20H
Flags Affected :No flags affected. Flags Affected :No flags affected.
Addressing mode: Register indirect.Addressing mode: Register indirect.

STACK AND MACHINE STACK AND MACHINE
CONTROLCONTROL
POP Rp.(Pop register pair contents from stack).POP Rp.(Pop register pair contents from stack).
Example:POP D(POP the content of DE pair from Stack).Example:POP D(POP the content of DE pair from Stack).

• Suppose at DE pair the data is H= 20H,L= 30H SP was Suppose at DE pair the data is H= 20H,L= 30H SP was
initialized at FFFFHinitialized at FFFFH

Initially After executionInitially After execution
D=20H,E=30H D=10H,E=80H.D=20H,E=30H D=10H,E=80H.
FFFD=80H,FFFE=10H FFFD=80H,FFFE=10H
Flags Affected :No flags affected. Flags Affected :No flags affected.
Addressing mode: Register indirectAddressing mode: Register indirect

STACK AND MACHINE STACK AND MACHINE
CONTROLCONTROL

XTHL (Exchange HL register pair contents with top of stack).XTHL (Exchange HL register pair contents with top of stack).
Example:XTHL(Exchange top with HL pair).Example:XTHL(Exchange top with HL pair).

• Suppose at HL pair the data is H= 20H,L= 30H & SP Suppose at HL pair the data is H= 20H,L= 30H & SP
=FFFFH=FFFFH

& at locations FFFF=10H and at FFFE= 80H.& at locations FFFF=10H and at FFFE= 80H.
Initially After executionInitially After execution
H=20H,L=30H H=10H,L=80H.H=20H,L=30H H=10H,L=80H.
SP=FFFF =10H,FFFE=80H FFFD=20H,FFFE=30H SP=FFFF =10H,FFFE=80H FFFD=20H,FFFE=30H
Flags Affected :No flags affected. Flags Affected :No flags affected.
Addressing mode: Register indirect.Addressing mode: Register indirect.

ADDRESSING MODES OF 8085ADDRESSING MODES OF 8085

Immediate addressing:Immediate addressing:
Immediate data is transferred to address or register.Immediate data is transferred to address or register.
Example:Example:
MVI A,20H. Transfer immediate data 20H to accumulator. MVI A,20H. Transfer immediate data 20H to accumulator.
Number of bytes:Number of bytes:
Either 2 or 3 bytes long.Either 2 or 3 bytes long.
11stst byte is opcode. byte is opcode.
22ndnd byte 8 bit data . byte 8 bit data .
33rdrd byte higher byte data of 16 bytes. byte higher byte data of 16 bytes.

ADDRESSING MODES OF 8085ADDRESSING MODES OF 8085

Register addressing:Register addressing:
Data is transferred from one register to other.Data is transferred from one register to other.
Example:Example:
MOV A, C :Transfer data from C register to accumulator. MOV A, C :Transfer data from C register to accumulator.
Number of bytes:Number of bytes:
Only 1 byte long.Only 1 byte long.
One byte is opcode.One byte is opcode.

ADDRESSING MODES OF 8085ADDRESSING MODES OF 8085

Direct addressing:Direct addressing:
• Data is transferred from direct address to other register Data is transferred from direct address to other register

or vice-versa.or vice-versa.
Example:Example:
LDA C200H .Transfer contents from C200H to Acc. LDA C200H .Transfer contents from C200H to Acc.
Number of bytes:Number of bytes:
These are 3 bytes long.These are 3 bytes long.
11stst byte is opcode. byte is opcode.
22ndnd byte lower address. byte lower address.
33rdrd byte higher address. byte higher address.

ADDRESSING MODES OF 8085ADDRESSING MODES OF 8085

Indirect addressing:Indirect addressing:
 Data is transferred from address pointed by the Data is transferred from address pointed by the

data in a register to other register or vice-versa.data in a register to other register or vice-versa.
Example:Example:
MOV A, M: Move contents from address pointed by M to MOV A, M: Move contents from address pointed by M to

Acc. Acc.
Number of bytes:Number of bytes:
These are 3 bytes long.These are 3 bytes long.
11stst byte is opcode. byte is opcode.
22ndnd byte lower address. byte lower address.
33rdrd byte higher address. byte higher address.

ADDRESSING MODES OF 8085ADDRESSING MODES OF 8085

Implied addressing:Implied addressing:

• These doesn’t require any operand. The data is specified These doesn’t require any operand. The data is specified
in Opcode itself.in Opcode itself.

Example: RAL: Rotate left with carry.Example: RAL: Rotate left with carry.
No.of Bytes:No.of Bytes:
These are single byte instruction or Opcode only.These are single byte instruction or Opcode only.

PROGRAMPROGRAM

• Write a program to transfer a block of data from C550H to Write a program to transfer a block of data from C550H to
C55FH. Store the data from C570H to C57FH .C55FH. Store the data from C570H to C57FH .

 LXI H ,C550HLXI H ,C550H
 LXI B ,C570HLXI B ,C570H
 MVI D,0FHMVI D,0FH
UP MOV A,MUP MOV A,M
 STAX BSTAX B
 INX HINX H
 INX BINX B
 DCR DDCR D
 JNZ UPJNZ UP
 RST1RST1

PROGRAMPROGRAM

• Find out errors in the following :Find out errors in the following :
• MVI B,D =Immediate addressing doesn’t have register MVI B,D =Immediate addressing doesn’t have register

as operand .Therefore, MVI B,80H.as operand .Therefore, MVI B,80H.
• INX L=Increment operator always acts on the higher INX L=Increment operator always acts on the higher

memory address in register pair .Thus ,INX H.memory address in register pair .Thus ,INX H.
• JP 80H = Conditional jump instructions doesn’t have any JP 80H = Conditional jump instructions doesn’t have any

immediate operand .Thus, JP UP. immediate operand .Thus, JP UP.
If Flag contents are AB H, what is flag status If Flag contents are AB H, what is flag status
If flag contains AB H then it’s values from DIf flag contains AB H then it’s values from D7 7 to Dto D00 are are
10101011.10101011.
By comparing it with flag register we get S=1,Z=0,AC=0,By comparing it with flag register we get S=1,Z=0,AC=0,
P=0,Cy=1. P=0,Cy=1.

PROGRAMPROGRAM

11. What are the instructions for the following actions?11. What are the instructions for the following actions?

• Load the PC with second and third byte of instruction.Load the PC with second and third byte of instruction.
LXI H, C200HLXI H, C200H
PCHL Load PC with HL contentPCHL Load PC with HL content
Thus PC= L,PC +1=H.Thus PC= L,PC +1=H.

• No change in normal execution except increment the PC.No change in normal execution except increment the PC.
NOP (No operation)NOP (No operation)

• This instruction has no effect on code only used to cause This instruction has no effect on code only used to cause
delay .delay .

PROGRAMPROGRAM
Write a program to add 10 data bytes. Data is stored from Write a program to add 10 data bytes. Data is stored from

locations C200. Store result at C300H.locations C200. Store result at C300H.
 LXI H,C200 HLXI H,C200 H
 MVI C, 0A HMVI C, 0A H
UP MVI A,00 HUP MVI A,00 H
 MOV B,MMOV B,M
 ADD BADD B
 INX HINX H
 DCR CDCR C
 JNZ UPJNZ UP
 STA C300HSTA C300H
 RST1.RST1.

TIMING AND STATE DIAGRAMTIMING AND STATE DIAGRAM

• The The µP operates with reference to clock signal.The rise µP operates with reference to clock signal.The rise
and fall of the pulse of the clock gives one clock cycle.and fall of the pulse of the clock gives one clock cycle.

• Each clock cycle is called a T state and a collection of Each clock cycle is called a T state and a collection of
several T states gives a machine cycle.several T states gives a machine cycle.

• Important machine cycles are :Important machine cycles are :

• Op-code fetch.Op-code fetch.

• Memory read.Memory read.

• Memory write. Memory write.

• I/Op-read.I/Op-read.

• I/O writeI/O write..

TIMING AND STATE DIAGRAMTIMING AND STATE DIAGRAM

Op-code FetchOp-code Fetch:It basically requires 4 T states from T:It basically requires 4 T states from T11-T-T4 4

• The ALE pin goes high at first T state always.The ALE pin goes high at first T state always.
• ADAD00-AD-AD77 are used to fetch OP-code and store the lower are used to fetch OP-code and store the lower

byte of Program Counter.byte of Program Counter.
• AA88-A-A1515 store the higher byte of the Program Counter store the higher byte of the Program Counter

while IO/Mwhile IO/M¯̄ will be low since it is memory related will be low since it is memory related
operation.operation.

• RDRD¯̄ will only be low at the Op-code fetching time. will only be low at the Op-code fetching time.
• WRWR¯̄ will be at HIGH level since no write operation is will be at HIGH level since no write operation is

done.done.
• SS00=1,S=1,S11=1 for Op-code fetch cycle.=1 for Op-code fetch cycle.

TIMING AND STATE DIAGRAMTIMING AND STATE DIAGRAM

Op-code fetch cycle :Op-code fetch cycle :

TIMING AND STATE DIAGRAMTIMING AND STATE DIAGRAM

Memory Read CycleMemory Read Cycle: : It basically requires 3T states from TIt basically requires 3T states from T11-T-T3 3
..

• The ALE pin goes high at first T state always.The ALE pin goes high at first T state always.

• ADAD00-AD-AD77 are used to fetch data from memory and store are used to fetch data from memory and store
the lower byte of address.the lower byte of address.

• AA88-A-A1515 store the higher byte of the address while IO/M store the higher byte of the address while IO/M¯̄
will be low since it is memory related operation.will be low since it is memory related operation.

• RDRD¯̄ will only be low at the data fetching time. will only be low at the data fetching time.

• WRWR¯̄ will be at HIGH level since no write operation is will be at HIGH level since no write operation is
done.done.

• SS00=0,S=0,S11=1 for Memory read cycle.=1 for Memory read cycle.

TIMING AND STATE DIAGRAMTIMING AND STATE DIAGRAM

Memory write CycleMemory write Cycle: : It basically requires 3T states from TIt basically requires 3T states from T11--
TT3 .3 .

• The ALE pin goes high at first T state always.The ALE pin goes high at first T state always.
• ADAD00-AD-AD77 are used to fetch data from CPU and store the are used to fetch data from CPU and store the

lower byte of address.lower byte of address.
• AA88-A-A1515 store the higher byte of the address while store the higher byte of the address while

IO/MIO/M¯̄ will be low since it is memory related operation. will be low since it is memory related operation.
• RDRD¯̄ will be HIGH since no read operation is done. will be HIGH since no read operation is done.
• WRWR¯̄ will be at LOW level only when data fetching is will be at LOW level only when data fetching is

done.done.
• SS00=1,S=1,S11=0 for Memory write cycle.=0 for Memory write cycle.

SUBROUTINESUBROUTINE
Calculation of Delay using 8 bit counter:Calculation of Delay using 8 bit counter:

• Consider following example:Consider following example:
 MVI C, count(8 bit) H 7 T statesMVI C, count(8 bit) H 7 T states

UP DCR CUP DCR C 4 T states 4 T states
 JNZ UP 10/7 T JNZ UP 10/7 T
 RETRET 10T10T

• Here loop UP is executed (N-1) times.Here loop UP is executed (N-1) times.

• Thus delay is Thus delay is
Td=M+[(count)x N)Td=M+[(count)x N) -3.-3.

• Where M= no.of T states outside loop.Where M= no.of T states outside loop.
 N=no.of T states inside loop.N=no.of T states inside loop.

SUBROUTINESUBROUTINE

• Here value of M= 17, N= 14.Here value of M= 17, N= 14.

• The maximum delay will occur if count is 255 or FF H.The maximum delay will occur if count is 255 or FF H.

• Thus Td max =17+[255x14]-3= 3584 T states.Thus Td max =17+[255x14]-3= 3584 T states.

• For 0.5 µsec delay for a T state, we get For 0.5 µsec delay for a T state, we get

• Td max=0.5 µsec x 3584= 1792 µsec or 1.792 m sec.Td max=0.5 µsec x 3584= 1792 µsec or 1.792 m sec.

8085 Memory Interfacing8085 Memory Interfacing
• Generally µP 8085 can address 64 kB of memory .

• Generally EPROMS are used as program memory and RAM as
data memory.

• We can interface Multiple RAMs and EPROMS to single µP .

• Memory interfacing includes 3 steps :

5. Select the chip.

6. Identify register.

7. Enable appropriate buffer.

8085 Memory Interfacing8085 Memory Interfacing

• Example: Example: Interface 2Kbytes of Memory to 8085 with Interface 2Kbytes of Memory to 8085 with
starting address 8000Hstarting address 8000H..

Initially we realize that 2K memory requires 11 address Initially we realize that 2K memory requires 11 address
lineslines

(2^11=2048). So we use A(2^11=2048). So we use A00-A-A10 10 ..
• Write down AWrite down A1515 –A –A00

A15
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1

1

0

0

0

0

0

0

0

0

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

ADD

8000H

87FFH

8085 Memory Interfacing8085 Memory Interfacing

• Address lines AAddress lines A00-A-A10 10 are used to interface memory while are used to interface memory while
AA1111,A,A1212,A,A1313,A,A1414,A,A1515 are given to 3:8 Decoder to provide an are given to 3:8 Decoder to provide an
output signal used to select the memory chip CSoutput signal used to select the memory chip CS¯or Chip ¯or Chip
select input.select input.

• MEMR¯ and MEMW¯are given to RD¯and WR¯pins of MEMR¯ and MEMW¯are given to RD¯and WR¯pins of
Memory chip.Memory chip.

• Data lines DData lines D00-D-D77 are given to D are given to D00-D-D77 pins of the memory pins of the memory
chip.chip.

• In this way memory interfacing can be achieved.In this way memory interfacing can be achieved.

8085 Memory Interfacing8085 Memory Interfacing

• The diagram of 2k interfacing is shown below:The diagram of 2k interfacing is shown below:

A15-A8

Latch
AD7-AD0

D7- D0

A7- A0

8085

ALE

IO/MRDWR

2K Byte
Memory

Chip

WRRD

CS

A10- A0

A15- A11
3:8DECODER

8085 Memory Interfacing8085 Memory Interfacing

•In this example we saw that some address lines are used for
 interfacing while others are for decoding.

•It is called absolute decoding.

•We sometimes don’t requires that many address lines.So
we ignore them.But this may lead to shadowing or multiple
address.

•This type of decoding is called linear decoding or partial
decoding.

•In partial decoding wastage of address takes place but it
requires less hardware and cost is also less as compared with
absolute one.

8255 PIN DIAGRAM8255 PIN DIAGRAM
PA0-PA7 I/O Port A Pins

PB0-PB7 I/O Port B Pins

PC0-PC7 I/O Port C Pins

D0-D7 I/O Data Pins

RESET I Reset pin

RD¯ I Read input

WR ¯ I Write input

A0-A1 I Address pins

CS ¯ I Chip select

Vcc , Gnd I +5volt supply

8255 BLOCK DIAGRAM8255 BLOCK DIAGRAM

8255 BLOCK DIAGRAM8255 BLOCK DIAGRAM

 Data Bus BufferData Bus Buffer: It is an 8 bit data buffer used to : It is an 8 bit data buffer used to
interface 8255 with 8085. It is connected to Dinterface 8255 with 8085. It is connected to D00-D-D7 7 bits bits
of 8255.of 8255.

 Read/write control logicRead/write control logic:It consists of inputs:It consists of inputs
RDRD¯̄,WR,WR¯̄,A0,A1,CS,A0,A1,CS¯̄ . .

 RDRD¯̄,WR,WR¯ are used for reading and writing on to 8255 ¯ are used for reading and writing on to 8255
and are connected to MEMR¯,MEMW¯ of 8085 and are connected to MEMR¯,MEMW¯ of 8085
respectively.respectively.

 AA00,A,A11 are Port select signals used to select the are Port select signals used to select the
particular port .particular port .

 CS ¯CS ¯ is used to select the 8255 device . is used to select the 8255 device .
 It is controlled by the output of the 3:8 decoder used It is controlled by the output of the 3:8 decoder used

to decode the address lines of 8085.to decode the address lines of 8085.

8255 BLOCK DIAGRAM8255 BLOCK DIAGRAM

A1 A0 Selected port

0 0 Port A

0 1 Port B

1 0 Port C

1 1 Control Register

A0,A1 decide the port to be used in 8255.

8255 BLOCK DIAGRAM8255 BLOCK DIAGRAM

 Group A and Group B Control:Group A and Group B Control:
 Group A control consists of Port A and Port C Group A control consists of Port A and Port C

upper.upper.
 Group B control consists of Port A and Port C Group B control consists of Port A and Port C

lower.lower.
 Each group is controlled through software.Each group is controlled through software.
 They receive commands from the RDThey receive commands from the RD¯̄, WR, WR¯̄ pins pins

to allow access to bit pattern of 8085.to allow access to bit pattern of 8085.
 The bit pattern consists of :The bit pattern consists of :

7.7. Information about which group is operated.Information about which group is operated.

8.8. Information about mode of Operation.Information about mode of Operation.

8255 BLOCK DIAGRAM8255 BLOCK DIAGRAM

• PORT A,BPORT A,B:These are bi-directional 8 bit ports each and :These are bi-directional 8 bit ports each and
are used to interface 8255 with CPU or peripherals.are used to interface 8255 with CPU or peripherals.

• Port A is controlled by Group A while Port B is Port A is controlled by Group A while Port B is
controlled by Group B Control.controlled by Group B Control.

• PORT CPORT C: This is a bi-directional 8 bit port controlled : This is a bi-directional 8 bit port controlled
partially by Group A control and partially by Group B partially by Group A control and partially by Group B
control .control .

• It is divided into two parts Port C upper and Port C It is divided into two parts Port C upper and Port C
lower each of a nibble.lower each of a nibble.

• It is used mainly for control signals and interfacing It is used mainly for control signals and interfacing
with peripherals.with peripherals.

8255 MODES8255 MODES
• Mode 0Mode 0 : Simple I/O : Simple I/O

• Any of A, B, CL and CH can be programmed as input or Any of A, B, CL and CH can be programmed as input or
outputoutput

• Mode 1Mode 1: I/O with Handshake: I/O with Handshake
• A and B can be used for I/OA and B can be used for I/O
• C provides the handshake signalsC provides the handshake signals

• Mode 2Mode 2: Bi-directional with handshake: Bi-directional with handshake
• A is bi-directional with C providing handshake signalsA is bi-directional with C providing handshake signals
• B is simple I/O (mode-0) or handshake I/O (mode-1)B is simple I/O (mode-0) or handshake I/O (mode-1)

• BSR (Bit Set Reset) ModeBSR (Bit Set Reset) Mode
• Only C is available for bit mode access.Only C is available for bit mode access.
• Allows single bit manipulation for control applicationsAllows single bit manipulation for control applications

INTERFACING 8085 & 8255INTERFACING 8085 & 8255

• Here 8255 is interfaced in Memory Mapped I/O mode.Here 8255 is interfaced in Memory Mapped I/O mode.
Initially we write down the addresses and then interface it .Initially we write down the addresses and then interface it .

A15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Port

1 0 0 0 0 X X X X X X X X X 0 0 A

1 0 0 0 0 X X X X X X X X X 0 1 B

1 0 0 0 0 X X X X X X X X X 1 0 C

1 0 0 0 0 X X X X X X X X X 1 1 CW

INTERFACING 8085 & 8255INTERFACING 8085 & 8255
• Thus we get addresses ,considering don’t cares to be zero Thus we get addresses ,considering don’t cares to be zero

asas
Port A =8000HPort A =8000H
Port B =8001HPort B =8001H
Port C =8002HPort C =8002H
CWR =8003HCWR =8003H

• Then,we give AThen,we give A1111,A,A1212,A,A1313 pins to A,B,C inputs of Decoder to pins to A,B,C inputs of Decoder to
enable 8255 or Chip Select.enable 8255 or Chip Select.

• AA1515 is logic 1 so it is given to active HIGH G is logic 1 so it is given to active HIGH G11 pin& A pin& A1414 ,IO/M ,IO/M
¯̄ are given to active low G2B are given to active low G2B ¯̄,G2A ,G2A ¯̄ pins. pins.

• Output from Latch is given as AOutput from Latch is given as A00,A,A11 pins to 8255 while D pins to 8255 while D00--
DD77 are given as data inputs. are given as data inputs.

INTERFACING 8085 & 8255INTERFACING 8085 & 8255

82558085
decoder 3:8

74373

(AD0-AD7)

D7-D0

A0-A7

/CS

A0
A1

O0
O1

O7

A13
A12
A11

ALE

RD ¯
WR ¯

RD¯
WR¯

G2A G2B G1

A15

A14

IO/M

A

B

C
 PA

 PB

PC

INTERFACING 8085 & 8255INTERFACING 8085 & 8255

Example:Example:Take data from 8255 port B.Add FF H .Output Take data from 8255 port B.Add FF H .Output
result to port A.result to port A.

MVI A,82H Initialize 8255.MVI A,82H Initialize 8255.
OUT 83H OUT 83H
LDA 81H Take data from port B LDA 81H Take data from port B
ADI FFH Add FF H to dataADI FFH Add FF H to data
OUT 80H. OUT Result to port A. OUT 80H. OUT Result to port A.
RST1. STOP.RST1. STOP.

INTERFACING STEPPER MOTOR INTERFACING STEPPER MOTOR
with 8255with 8255

SERIAL COMMUNICATIONSERIAL COMMUNICATION

Serial Communications systems are of three types:Serial Communications systems are of three types:
SimplexSimplex: This is a one way communication.: This is a one way communication.
• Only one party can speak.Only one party can speak.
• The other party only hears to the first one but cant The other party only hears to the first one but cant

communicate.communicate.
System A System BSystem A System B

 unidirectionalunidirectional

Transmi
tter

Receiver

SERIAL COMMUNICATIONSERIAL COMMUNICATION

System A System BSystem A System B

 OR OR

Transmi
tter/Rec
eiver

Receiver
/Transm
itter

Half Duplex: It is a two way communication between two ports
provided that only party can communicate at a time.

•When one party stops transmitting the other starts transmitting.

•The first party now acts as a receiver.

SERIAL COMMUNICATIONSERIAL COMMUNICATION

 OR/AND. OR/AND.

Full DuplexFull Duplex: It is a two way communication between two : It is a two way communication between two
ports and both parties can communicate at same time. ports and both parties can communicate at same time.

• Thus here efficient communication can be established.Thus here efficient communication can be established.

Transmi
tter/Rec
eiver

Receiver
/Transm
itter.

TRANSMISSION FORMATSTRANSMISSION FORMATS

Asynchronous Synchronous

1. It transfers one character at a
time.

1. It transfers group of
characters at a time.

2. Used for transfer data rates
<20KBPS

2. Used for transfer data rates
>20KBPS

3. Start and stop bit for each
character which forms a frame.

3. No start and stop bit for
each character.

4. Two Clocks are used for Tx
and Rx

4. Single clock is used for both
Tx and Rx.

INTERRUPTS IN 8085INTERRUPTS IN 8085

• Interrupt is a process where an external device can get Interrupt is a process where an external device can get
the attention of the microprocessor.the attention of the microprocessor.

 The process starts from the I/O device The process starts from the I/O device
 The process is asynchronous.The process is asynchronous.

• Classification of InterruptsClassification of Interrupts

Interrupts can be classified into two types:Interrupts can be classified into two types:
• Maskable InterruptsMaskable Interrupts (Can be delayed or Rejected) (Can be delayed or Rejected)
• Non-Maskable InterruptsNon-Maskable Interrupts (Can not be delayed or (Can not be delayed or

Rejected)Rejected)

INTERRUPTS IN 8085INTERRUPTS IN 8085

Interrupts can also be classified into:Interrupts can also be classified into:
• VectoredVectored (the address of the service routine is (the address of the service routine is

hard-wired)hard-wired)
• Non-vectoredNon-vectored (the address of the service routine (the address of the service routine

needs to be supplied externally by the device)needs to be supplied externally by the device)

• An interrupt is considered to be an emergency signal An interrupt is considered to be an emergency signal
that may be serviced.that may be serviced.

– The Microprocessor may respond to it as soon The Microprocessor may respond to it as soon
as possible.as possible.

INTERRUPTS IN 8085INTERRUPTS IN 8085

• The 8085 has 5 interrupt inputs.The 8085 has 5 interrupt inputs.
• The INTR inputThe INTR input..

The INTR input is the only non-vectored The INTR input is the only non-vectored
interrupt.interrupt.

INTR is mask-able using the EI/DI instruction INTR is mask-able using the EI/DI instruction
pair.pair.

RST 5.5, RST 6.5, RST 7.5RST 5.5, RST 6.5, RST 7.5 are all automatically are all automatically
vectored.vectored.
• RST 5.5, RST 6.5, and RST 7.5 are all mask-able.RST 5.5, RST 6.5, and RST 7.5 are all mask-able.

TRAPTRAP is the only non-mask-able interrupt in the is the only non-mask-able interrupt in the
80858085
• TRAP is also automatically vectored.TRAP is also automatically vectored.

INTERRUPTS IN 8085INTERRUPTS IN 8085

• Non vectored interrupts:Non vectored interrupts:

• The 8085 recognizes 8 RESTART instructions: RST0 - The 8085 recognizes 8 RESTART instructions: RST0 -

RST7 . ERST7 . Each of these would send the ach of these would send the
execution to a predetermined hard-execution to a predetermined hard-
wired memory location:wired memory location:

Restart
Instruction

Equivalent to

RST0 CALL 0000H

RST1 CALL 0008H

RST2 CALL 0010H

RST3 CALL 0018H

RST4 CALL 0020H

RST5 CALL 0028H

RST6 CALL 0030H

RST7 CALL 0038H

INTERRUPT PRIORITYINTERRUPT PRIORITY

Interrupt name Mask-able Vectored

TRAP No Yes

RST 7.5 Yes Yes

RST 6.5 Yes Yes

RST 5.5 Yes Yes

INTR YES NO

SIM INSTRUCTIONSIM INSTRUCTION

101

S
O

D
S

D
E

X
X

X
R

7.
5

M
S

E
M

7.
5

M
6.

5
M

5.
5

01234567

RST5.5 Mask

RST6.5 Mask
RST7.5 Mask

} 0 - Available
1 - Masked

Mask Set Enable
0 - Ignore bits 0-2
1 - Set the masks according
 to bits 0-2

Force RST7.5 Flip Flop to resetNot Used

Enable Serial Data
0 - Ignore bit 7
1 - Send bit 7 to SOD pin

Serial Out Data

•SIM Instruction helps activate a particular interrupt.

•It can also mask a maskable interrupt.

SIM INSTRUCTIONSIM INSTRUCTION

• Example: Example: Set the interrupt masks so that Set the interrupt masks so that
RST5.5 is enabled, RST6.5 is masked, and RST5.5 is enabled, RST6.5 is masked, and
RST7.5 is enabled.RST7.5 is enabled.

• First, determine the contents of the accumulator.First, determine the contents of the accumulator.
- Enable 5.5 bit 0 = 0
- Disable 6.5 bit 1 = 1
- Enable 7.5 bit 2 = 0
- Allow setting the masks bit 3 = 1
- Don’t reset the flip flop bit 4 = 0
- Bit 5 is not used bit 5 = 0
- Don’t use serial data bit 6 = 0
- Serial data is ignored bit 7 = 0

S
D

O
S

D
E

X
X

X

R
7.

5
M

S
E

M
7.

5
M

6.
5

M
5.

5

0 1 00000 1

EI ; Enable interrupts including INTR
MVI A, 0A ; Prepare the mask to enable RST 7.5, and 5.5, disable 6.5
SIM ; Apply the settings RST masks

RIM INSTRUCTIONRIM INSTRUCTION

Serial Data In

RST5.5 Interrupt Pending

RST6.5 Interrupt Pending
RST7.5 Interrupt Pending

0 - Available
1 - Masked

Interrupt Enable
Value of the Interrupt Enable
Flip Flop

S
D

I
P

7.
5

P
6.

5
P

5.
5

IE
M

7.
5

M
6.

5
M

5.
5

01234567

RST5.5 Mask

RST6.5 Mask
RST7.5 Mask

}

•Since the 8085 has five interrupt lines, interrupts may occur during an
ISR and remain pending.

•Using the RIM instruction, it is possible to can read the status of the
interrupt lines and find if there are any pending interrupts.

8253 PIT8253 PIT

8253 Features8253 Features

• Three independent 16 bit counters.Three independent 16 bit counters.

• 24 pin Dual in line Package.24 pin Dual in line Package.

• Counting facility in Both BCD and Binary modes.Counting facility in Both BCD and Binary modes.

• Dc to 2 MHz operating Frequency.Dc to 2 MHz operating Frequency.

• Can be used as a clock generator.Can be used as a clock generator.

CONTROL WORDCONTROL WORD

SC1 SC0 RL1 RL0 M2 M1 M0 BCD

D0D7

0 0 Counter0

0 1 Counter1

1 0 Counter2

1 1 ILLEGAL

SC1 SC0 Select counter

0 0 Counter latching

0 1 Read/load LSB

1 0 Read/load MSB

1 1 R/L MSB 1st
then LSB.

 RL1 RL0 Read/Load

CONTROL WORDCONTROL WORD

0 0 0 Mode 0

0 0 1 Mode 1

X 1 0 Mode 2

X 1 1 Mode 3

1 0 0 Mode 4

1 0 1 Mode 5

M2 M1 M0
BCD =0 Binary counter

BCD =1 BCD counter

8253 SQUARE WAVE8253 SQUARE WAVE

• Example: Example: Use 8253 as a square wave generator with Use 8253 as a square wave generator with
1ms period if the input frequency is 1MHz.1ms period if the input frequency is 1MHz.

• We use counter 0 as a square wave generator and We use counter 0 as a square wave generator and
address of counter 0 =10H and control register =13H.address of counter 0 =10H and control register =13H.

• I/P frequency is 1MHz.So time is 1I/P frequency is 1MHz.So time is 1µsec.µsec.

• Count value = Required period /Input period = 1ms/1 Count value = Required period /Input period = 1ms/1
µsecµsec

• =1000(Decimal).=1000(Decimal).

• Thus we use 8253 as a decimal counter.Thus we use 8253 as a decimal counter.

8253 SQUARE WAVE8253 SQUARE WAVE

• Program:Program:
 MVI A,37H Initialize counter 0 mode 3MVI A,37H Initialize counter 0 mode 3
 OUT 13H 16 bit count BCDOUT 13H 16 bit count BCD
 MVI A,00H Load LSB count to counter 0MVI A,00H Load LSB count to counter 0
 OUT 10H OUT 10H
 MVI A,10H Load MSB count to counter 0MVI A,10H Load MSB count to counter 0
 OUT 10H. OUT 10H.

• Thus, the output will be a square wave.Thus, the output will be a square wave.

DMADMA

8257 DMA8257 DMA

• It is a 4 Channel DMA containing 4 individual I/P ,O/P It is a 4 Channel DMA containing 4 individual I/P ,O/P
Channels.Channels.

CHCH00,CH,CH11,CH,CH22,CH,CH33

• It is compatible with Intel processors.It is compatible with Intel processors.
• The maximum frequency is 3 MHz.The maximum frequency is 3 MHz.
It executes 3 cycles:It executes 3 cycles:
• DMA readDMA read
• DMA write.DMA write.
• DMA verifyDMA verify..
• The external device can terminate DMA OperationThe external device can terminate DMA Operation

OPERRATING MODES OF 8257OPERRATING MODES OF 8257

• Rotating priority modeRotating priority mode:Each channel has equal :Each channel has equal
priority.priority.

• Priority is shifted from one channel to other.Priority is shifted from one channel to other.

• Fixed priority modeFixed priority mode: Each channel has a fixed priority: Each channel has a fixed priority
and if higher priority channels are busy then smaller and if higher priority channels are busy then smaller

priority will get to serve. priority will get to serve.

• Extended write modeExtended write mode: This mode is used to interface : This mode is used to interface
slower devices to the system.slower devices to the system.

• TC stop modeTC stop mode:If this bit is set the channel whose :If this bit is set the channel whose
terminal count is reached is disabled.terminal count is reached is disabled.

• Auto reload modeAuto reload mode: If this bit is set data is transferred : If this bit is set data is transferred
by channel 2 only.All other channels are not used. by channel 2 only.All other channels are not used.

INSTRUCTION SET OF 8085

Instruction Set of 8085

 An instruction is a binary pattern designed inside a microprocessor
to perform a specific function.

 The entire group of instructions that a microprocessor supports is
called Instruction Set.

 8085 has 246 instructions.

 Each instruction is represented by an 8-bit binary value.

 These 8-bits of binary value is called Op-Code or Instruction Byte.

Classification of Instruction Set

• Data Transfer Instruction

• Arithmetic Instructions

• Logical Instructions

• Branching Instructions

• Control Instructions

Data Transfer Instructions

• These instructions move data between registers, or between
memory and registers.

• These instructions copy data from source to destination.

• While copying, the contents of source are not modified.

Data Transfer Instructions

Opcode Operand Description

MOV Rd, Rs
Rd, M
M, Rs

Copy from source to destination.

 This instruction copies the contents of the source register into the
destination register.

 The contents of the source register are not altered.

 If one of the operands is a memory location, its location is specified by
the contents of the HL registers.

 Example: MOV B, C

 MOV B, M

 MOV M, C

Data Transfer Instructions

Opcode Operand Description

MVI Rd, Data
M, Data

Move immediate 8-bit

 The 8-bit data is stored in the destination register or
memory.

 If the operand is a memory location, its location is
specified by the contents of the H-L registers.

 Example: MVI A, 57H

 MVI M, 57H

Data Transfer Instructions

Opcode Operand Description

LXI Reg. pair, 16-bit
data

Load register pair immediate

 This instruction loads 16-bit data in the register pair.

 Example: LXI H, 2034 H

Data Transfer Instructions

Opcode Operand Description

LDA 16-bit address Load Accumulator

 The contents of a memory location, specified by a 16-
bit address in the operand, are copied to the
accumulator.

 The contents of the source are not altered.

 Example: LDA 2034H

Data Transfer Instructions

Opcode Operand Description

LDAX B/D Register Pair Load accumulator indirect

 The contents of the designated register pair point to a memory
location.

 This instruction copies the contents of that memory location into
the accumulator.

 The contents of either the register pair or the memory location are
not altered.

 Example: LDAX B

Data Transfer Instructions

Opcode Operand Description

LHLD 16-bit address Load H-L registers direct

 This instruction copies the contents of memory
location pointed out by 16-bit address into register L.

 It copies the contents of next memory location into
register H.

 Example: LHLD 2040 H

Data Transfer Instructions

Opcode Operand Description

STA 16-bit address Store accumulator direct

 The contents of accumulator are copied into the
memory location specified by the operand.

 Example: STA 2500 H

Data Transfer Instructions

Opcode Operand Description

STAX Reg. pair Store accumulator indirect

 The contents of accumulator are copied into the
memory location specified by the contents of the
register pair.

 Example: STAX B

Data Transfer Instructions

Opcode Operand Description

SHLD 16-bit address Store H-L registers direct

 The contents of register L are stored into memory
location specified by the 16-bit address.

 The contents of register H are stored into the next
memory location.

 Example: SHLD 2550 H

Data Transfer Instructions

Opcode Operand Description

XCHG None Exchange H-L with D-E

 The contents of register H are exchanged with the
contents of register D.

 The contents of register L are exchanged with the
contents of register E.

 Example: XCHG

Arithmetic Instructions

• These instructions perform the operations like:

• Addition

• Subtract

• Increment

• Decrement

Addition

• Any 8-bit number, or the contents of register, or the contents of
memory location can be added to the contents of accumulator.

• The result (sum) is stored in the accumulator.

• No two other 8-bit registers can be added directly.

• Example: The contents of register B cannot be added directly to the
contents of register C.

Subtraction

• Any 8-bit number, or the contents of register, or the contents of
memory location can be subtracted from the contents of
accumulator.

• The result is stored in the accumulator.

• Subtraction is performed in 2’s complement form.

• If the result is negative, it is stored in 2’s complement form.

• No two other 8-bit registers can be subtracted directly.

Increment / Decrement

• The 8-bit contents of a register or a memory location can be
incremented or decremented by 1.

• The 16-bit contents of a register pair can be incremented or
decremented by 1.

• Increment or decrement can be performed on any register or a
memory location.

Arithmetic Instructions

Opcode Operand Description

ADD R
M

Add register or memory to accumulator

 The contents of register or memory are added to the contents of
accumulator.

 The result is stored in accumulator.

 If the operand is memory location, its address is specified by H-L pair.

 All flags are modified to reflect the result of the addition.

 Example: ADD B or ADD M

Arithmetic Instructions

Opcode Operand Description

ADC R
M

Add register or memory to accumulator with
carry

 The contents of register or memory and Carry Flag (CY) are added to the
contents of accumulator.

 The result is stored in accumulator.

 If the operand is memory location, its address is specified by H-L pair.

 All flags are modified to reflect the result of the addition.

 Example: ADC B or ADC M

Arithmetic Instructions

Opcode Operand Description

ADI 8-bit data Add immediate to accumulator

 The 8-bit data is added to the contents of accumulator.

 The result is stored in accumulator.

 All flags are modified to reflect the result of the
addition.

 Example: ADI 45 H

Arithmetic Instructions

Opcode Operand Description

ACI 8-bit data Add immediate to accumulator with carry

 The 8-bit data and the Carry Flag (CY) are added to the
contents of accumulator.

 The result is stored in accumulator.

 All flags are modified to reflect the result of the addition.

 Example: ACI 45 H

Arithmetic Instructions

Opcode Operand Description

DAD Reg. pair Add register pair to H-L pair

 The 16-bit contents of the register pair are added to the
contents of H-L pair.

 The result is stored in H-L pair.

 If the result is larger than 16 bits, then CY is set.

 No other flags are changed.

 Example: DAD B

Arithmetic Instructions

Opcode Operand Description

SUB R
M

Subtract register or memory from accumulator

 The contents of the register or memory location are subtracted from the
contents of the accumulator.

 The result is stored in accumulator.

 If the operand is memory location, its address is specified by H-L pair.

 All flags are modified to reflect the result of subtraction.

 Example: SUB B or SUB M

Arithmetic Instructions

Opcode Operand Description

SBB R
M

Subtract register or memory from accumulator
with borrow

 The contents of the register or memory location and Borrow Flag (i.e. CY)
are subtracted from the contents of the accumulator.

 The result is stored in accumulator.

 If the operand is memory location, its address is specified by H-L pair.

 All flags are modified to reflect the result of subtraction.

 Example: SBB B or SBB M

Arithmetic Instructions

Opcode Operand Description

SUI 8-bit data Subtract immediate from accumulator

 The 8-bit data is subtracted from the contents of the
accumulator.

 The result is stored in accumulator.

 All flags are modified to reflect the result of subtraction.

 Example: SUI 45 H

Arithmetic Instructions

Opcode Operand Description

SBI 8-bit data Subtract immediate from accumulator with
borrow

 The 8-bit data and the Borrow Flag (i.e. CY) is subtracted
from the contents of the accumulator.

 The result is stored in accumulator.

 All flags are modified to reflect the result of subtraction.

 Example: SBI 45 H

Arithmetic Instructions

Opcode Operand Description

INR R
M

Increment register or memory by 1

 The contents of register or memory location are incremented
by 1.

 The result is stored in the same place.

 If the operand is a memory location, its address is specified by
the contents of H-L pair.

 Example: INR B or INR M

Arithmetic Instructions

Opcode Operand Description

INX R Increment register pair by 1

 The contents of register pair are incremented by 1.

 The result is stored in the same place.

 Example: INX H

Arithmetic Instructions

Opcode Operand Description

DCR R
M

Decrement register or memory by 1

 The contents of register or memory location are decremented
by 1.

 The result is stored in the same place.

 If the operand is a memory location, its address is specified by
the contents of H-L pair.

 Example: DCR B or DCR M

Arithmetic Instructions

Opcode Operand Description

DCX R Decrement register pair by 1

 The contents of register pair are decremented by 1.

 The result is stored in the same place.

 Example: DCX H

Logical Instructions

• These instructions perform logical operations on data stored in
registers, memory and status flags.

• The logical operations are:

• AND

• OR

• XOR

• Rotate

• Compare

• Complement

AND, OR, XOR

• Any 8-bit data, or the contents of register, or memory location can
logically have

• AND operation

• OR operation

• XOR operation

with the contents of accumulator.

• The result is stored in accumulator.

Rotate

• Each bit in the accumulator can be shifted either left or right to the
next position.

Compare

• Any 8-bit data, or the contents of register, or memory location can be
compares for:

• Equality

• Greater Than

• Less Than

with the contents of accumulator.

• The result is reflected in status flags.

Complement

• The contents of accumulator can be complemented.

• Each 0 is replaced by 1 and each 1 is replaced by 0.

Logical Instructions

Opcode Operand Description

CMP R
M

Compare register or memory with accumulator

 The contents of the operand (register or memory) are
compared with the contents of the accumulator.

 Both contents are preserved .

 The result of the comparison is shown by setting the
flags of the PSW as follows:

Logical Instructions

Opcode Operand Description

CMP R
M

Compare register or memory with accumulator

 if (A) < (reg/mem): carry flag is set

 if (A) = (reg/mem): zero flag is set

 if (A) > (reg/mem): carry and zero flags are reset.

 Example: CMP B or CMP M

Logical Instructions

Opcode Operand Description

CPI 8-bit data Compare immediate with accumulator

 The 8-bit data is compared with the contents of
accumulator.

 The values being compared remain unchanged.

 The result of the comparison is shown by setting the
flags of the PSW as follows:

Logical Instructions

Opcode Operand Description

CPI 8-bit data Compare immediate with accumulator

 if (A) < data: carry flag is set

 if (A) = data: zero flag is set

 if (A) > data: carry and zero flags are reset

 Example: CPI 89H

Logical Instructions

Opcode Operand Description

ANA R
M

Logical AND register or memory with
accumulator

 The contents of the accumulator are logically ANDed with the contents of
register or memory.

 The result is placed in the accumulator.

 If the operand is a memory location, its address is specified by the contents
of H-L pair.

 S, Z, P are modified to reflect the result of the operation.

 CY is reset and AC is set.

 Example: ANA B or ANA M.

Logical Instructions

Opcode Operand Description

ANI 8-bit data Logical AND immediate with accumulator

 The contents of the accumulator are logically ANDed with the
8-bit data.

 The result is placed in the accumulator.

 S, Z, P are modified to reflect the result.

 CY is reset, AC is set.

 Example: ANI 86H.

Logical Instructions

Opcode Operand Description

XRA R
M

Exclusive OR register or memory with
accumulator

 The contents of the accumulator are XORed with the contents of the register or memory.

 The result is placed in the accumulator.

 If the operand is a memory location, its address is specified by the contents of H-L pair.

 S, Z, P are modified to reflect the result of the operation.

 CY and AC are reset.

 Example: XRA B or XRA M.

Logical Instructions

Opcode Operand Description

ORA R
M

Logical OR register or memory with
accumulator

 The contents of the accumulator are logically ORed with the contents of the register or
memory.

 The result is placed in the accumulator.

 If the operand is a memory location, its address is specified by the contents of H-L pair.

 S, Z, P are modified to reflect the result.

 CY and AC are reset.

 Example: ORA B or ORA M.

Logical Instructions

Opcode Operand Description

ORI 8-bit data Logical OR immediate with accumulator

 The contents of the accumulator are logically ORed with the 8-
bit data.

 The result is placed in the accumulator.

 S, Z, P are modified to reflect the result.

 CY and AC are reset.

 Example: ORI 86H.

Logical Instructions

Opcode Operand Description

XRA R
M

Logical XOR register or memory with
accumulator

 The contents of the accumulator are XORed with the contents of the
register or memory.

 The result is placed in the accumulator.

 If the operand is a memory location, its address is specified by the
contents of H-L pair.

 S, Z, P are modified to reflect the result of the operation.

 CY and AC are reset.

 Example: XRA B or XRA M.

Logical Instructions

Opcode Operand Description

XRI 8-bit data XOR immediate with accumulator

 The contents of the accumulator are XORed with the
8-bit data.

 The result is placed in the accumulator.

 S, Z, P are modified to reflect the result.

 CY and AC are reset.

 Example: XRI 86H.

Logical Instructions

Opcode Operand Description

RLC None Rotate accumulator left

 Each binary bit of the accumulator is rotated left by one
position.

 Bit D7 is placed in the position of D0 as well as in the Carry
flag.

 CY is modified according to bit D7.

 S, Z, P, AC are not affected.

 Example: RLC.

Logical Instructions

Opcode Operand Description

RRC None Rotate accumulator right

 Each binary bit of the accumulator is rotated right by one
position.

 Bit D0 is placed in the position of D7 as well as in the Carry
flag.

 CY is modified according to bit D0.

 S, Z, P, AC are not affected.

 Example: RRC.

Logical Instructions

Opcode Operand Description

RAL None Rotate accumulator left through carry

 Each binary bit of the accumulator is rotated left by one
position through the Carry flag.

 Bit D7 is placed in the Carry flag, and the Carry flag is placed in
the least significant position D0.

 CY is modified according to bit D7.

 S, Z, P, AC are not affected.

 Example: RAL.

Logical Instructions

Opcode Operand Description

RAR None Rotate accumulator right through carry

 Each binary bit of the accumulator is rotated right by one
position through the Carry flag.

 Bit D0 is placed in the Carry flag, and the Carry flag is placed in
the most significant position D7.

 CY is modified according to bit D0.

 S, Z, P, AC are not affected.

 Example: RAR.

Logical Instructions

Opcode Operand Description

CMA None Complement accumulator

 The contents of the accumulator are complemented.

 No flags are affected.

 Example: CMA.

Logical Instructions

Opcode Operand Description

CMC None Complement carry

 The Carry flag is complemented.

 No other flags are affected.

 Example: CMC.

Logical Instructions

Opcode Operand Description

STC None Set carry

 The Carry flag is set to 1.

 No other flags are affected.

 Example: STC.

Branching Instructions

• The branching instruction alter the normal sequential flow.

• These instructions alter either unconditionally or conditionally.

Branching Instructions

Opcode Operand Description

JMP 16-bit address Jump unconditionally

 The program sequence is transferred to the memory
location specified by the 16-bit address given in the
operand.

 Example: JMP 2034 H.

Branching Instructions

Opcode Operand Description

Jx 16-bit address Jump conditionally

 The program sequence is transferred to the memory
location specified by the 16-bit address given in the
operand based on the specified flag of the PSW.

 Example: JZ 2034 H.

Jump Conditionally

Opcode Description Status Flags

JC Jump if Carry CY = 1

JNC Jump if No Carry CY = 0

JP Jump if Positive S = 0

JM Jump if Minus S = 1

JZ Jump if Zero Z = 1

JNZ Jump if No Zero Z = 0

JPE Jump if Parity Even P = 1

JPO Jump if Parity Odd P = 0

Branching Instructions

Opcode Operand Description

CALL 16-bit address Call unconditionally

 The program sequence is transferred to the memory
location specified by the 16-bit address given in the
operand.

 Before the transfer, the address of the next instruction after
CALL (the contents of the program counter) is pushed onto
the stack.

 Example: CALL 2034 H.

Branching Instructions

Opcode Operand Description

Cx 16-bit address Call conditionally

 The program sequence is transferred to the memory
location specified by the 16-bit address given in the
operand based on the specified flag of the PSW.

 Before the transfer, the address of the next instruction
after the call (the contents of the program counter) is
pushed onto the stack.

 Example: CZ 2034 H.

Call Conditionally

Opcode Description Status Flags

CC Call if Carry CY = 1

CNC Call if No Carry CY = 0

CP Call if Positive S = 0

CM Call if Minus S = 1

CZ Call if Zero Z = 1

CNZ Call if No Zero Z = 0

CPE Call if Parity Even P = 1

CPO Call if Parity Odd P = 0

Branching Instructions

Opcode Operand Description

RET None Return unconditionally

 The program sequence is transferred from the
subroutine to the calling program.

 The two bytes from the top of the stack are copied into
the program counter, and program execution begins at
the new address.

 Example: RET.

Branching Instructions

Opcode Operand Description

Rx None Call conditionally

 The program sequence is transferred from the
subroutine to the calling program based on the
specified flag of the PSW.

 The two bytes from the top of the stack are copied into
the program counter, and program execution begins at
the new address.

 Example: RZ.

Return Conditionally

Opcode Description Status Flags

RC Return if Carry CY = 1

RNC Return if No Carry CY = 0

RP Return if Positive S = 0

RM Return if Minus S = 1

RZ Return if Zero Z = 1

RNZ Return if No Zero Z = 0

RPE Return if Parity Even P = 1

RPO Return if Parity Odd P = 0

Branching Instructions

Opcode Operand Description

RST 0 – 7 Restart (Software Interrupts)

 The RST instruction jumps the control to one of eight
memory locations depending upon the number.

 These are used as software instructions in a program to
transfer program execution to one of the eight
locations.

 Example: RST 3.

Restart Address Table

Instructions Restart Address

RST 0 0000 H

RST 1 0008 H

RST 2 0010 H

RST 3 0018 H

RST 4 0020 H

RST 5 0028 H

RST 6 0030 H

RST 7 0038 H

Control Instructions

• The control instructions control the operation of microprocessor.

Control Instructions

Opcode Operand Description

NOP None No operation

 No operation is performed.

 The instruction is fetched and decoded but no
operation is executed.

 Example: NOP

Control Instructions

Opcode Operand Description

HLT None Halt

 The CPU finishes executing the current instruction
and halts any further execution.

 An interrupt or reset is necessary to exit from the halt
state.

 Example: HLT

Control Instructions

Opcode Operand Description

DI None Disable interrupt

 The interrupt enable flip-flop is reset and all the
interrupts except the TRAP are disabled.

 No flags are affected.

 Example: DI

Control Instructions

Opcode Operand Description

EI None Enable interrupt

 The interrupt enable flip-flop is set and all interrupts
are enabled.

 No flags are affected.

 This instruction is necessary to re-enable the
interrupts (except TRAP).

 Example: EI

Control Instructions

Opcode Operand Description

RIM None Read Interrupt Mask

 This is a multipurpose instruction used to read the
status of interrupts 7.5, 6.5, 5.5 and read serial data
input bit.

 The instruction loads eight bits in the accumulator
with the following interpretations.

 Example: RIM

RIM Instruction

Control Instructions

Opcode Operand Description

SIM None Set Interrupt Mask

 This is a multipurpose instruction and used to
implement the 8085 interrupts 7.5, 6.5, 5.5, and serial
data output.

 The instruction interprets the accumulator contents as
follows.

 Example: SIM

SIM Instruction

Addressing modes in 8085 microprocessor

 (by Garima Rohela)

The way of specifying data to be operated by an instruction is called addressing mode.

Types of addressing modes –
In 8085 microprocessor there are 5 types of addressing modes:

1. Immediate Addressing Mode –

In immediate addressing mode the source operand is always data. If the data is
8-bit, then the instruction will be of 2 bytes, if the data is of 16-bit then the
instruction will be of 3 bytes.

Examples:
MVI B 45 (move the data 45H immediately to register B)
LXI H 3050 (load the H-L pair with the operand 3050H immediately)
JMP address (jump to the operand address immediately)

2. Register Addressing Mode –

In register addressing mode, the data to be operated is available inside the
register(s) and register(s) is(are) operands. Therefore the operation is performed
within various registers of the microprocessor.

Examples:

MOV A, B (move the contents of register B to register A)
ADD B (add contents of registers A and B and store the result in register A)
INR A (increment the contents of register A by one)

 3. Direct Addressing Mode –
 In direct addressing mode, the data to be operated is available inside a memory
 location and that memory location is directly specified as an operand. The operand
is directly available in the instruction itself.

Examples:
LDA 2050 (load the contents of memory location into accumulator A)
LHLD address (load contents of 16-bit memory location into H-L register pair)
IN 35 (read the data from port whose address is 01)

4. Register Indirect Addressing Mode –

IN register indirect addressing mode, the data to be operated is available inside a
memory location and that memory location is indirectly specified b a register pair.

Examples:
MOV A, M (move the contents of the memory location pointed by the H-L pair to
the accumulator)

LDAX B (move contains of B-C register to the accumulator)
LXIH 9570 (load immediate the H-L pair with the address of the location 9570)

5. Implied/Implicit Addressing Mode –

In implied/implicit addressing mode the operand is hidden and the data to be
operated is available in the instruction itself.
Examples:
CMA (finds and stores the 1’s complement of the contains of accumultor A in A)
RRC (rotate accumulator A right by one bit)
RLC (rotate accumulator A left by one bit)

Notes on

Interrupts in 8085 microprocessor

(By Garima Rohela, Lecturer-GP Sonipat)

When microprocessor receives any interrupt signal from peripheral(s) which are
requesting its services, it stops its current execution and program control is transferred
to a sub-routine by generating CALL signal and after executing sub-routine by
generating RET signal again program control is transferred to main program from where
it had stopped.
When microprocessor receives interrupt signals, it sends an acknowledgement (INTA)
to the peripheral which is requesting for its service.

Interrupts can be classified into various categories based on different parameters:

1. Hardware and Software Interrupts –

When microprocessors receive interrupt signals through pins (hardware) of
microprocessor, they are known as Hardware Interrupts. There are 5 Hardware
Interrupts in 8085 microprocessor. They are – INTR, RST 7.5, RST 6.5, RST 5.5,
TRAP

Software Interrupts are those which are inserted in between the program which
means these are mnemonics of microprocessor. There are 8 software interrupts in
8085 microprocessor. They are – RST 0, RST 1, RST 2, RST 3, RST 4, RST 5,
RST 6, RST 7.

2. Vectored and Non-Vectored Interrupts –

Vectored Interrupts are those which have fixed vector address (starting address
of sub-routine) and after executing these, program control is transferred to that
address.

Vector Addresses are calculated by the formula 8 * TYPE

INTERRUPT VECTOR ADDRESS

TRAP (RST 4.5) 24 H

RST 5.5 2C H

INTERRUPT VECTOR ADDRESS

RST 6.5 34 H

RST 7.5 3C H

For Software interrupts vector addresses are given by:

INTERRUPT VECTOR ADDRESS

RST 0 00 H

RST 1 08 H

RST 2 10 H

RST 3 18 H

RST 4 20 H

RST 5 28 H

RST 6 30 H

RST 7 38 H

Non-Vectored Interrupts are those in which vector address is not predefined. The
interrupting device gives the address of sub-routine for these interrupts. INTR is
the only non-vectored interrupt in 8085 microprocessor.

3. Maskable and Non-Maskable Interrupts –

Maskable Interrupts are those which can be disabled or ignored by the
microprocessor. These interrupts are either edge-triggered or level-triggered, so
they can be disabled. INTR, RST 7.5, RST 6.5, RST 5.5 are maskable interrupts
in 8085 microprocessor.

Non-Maskable Interrupts are those which cannot be disabled or ignored by
microprocessor. TRAP is a non-maskable interrupt. It consists of both level as well
as edge triggering and is used in critical power failure conditions.

Priority of Interrupts –

When microprocessor receives multiple interrupt requests simultaneously, it will execute
the interrupt service request (ISR) according to the priority of the interrupts.

Instruction for Interrupts –
1. Enable Interrupt (EI) – The interrupt enable flip-flop is set and all interrupts are

enabled following the execution of next instruction followed by EI. No flags are
affected. After a system reset, the interrupt enable flip-flop is reset, thus disabling
the interrupts. This instruction is necessary to enable the interrupts again (except
TRAP).

2. Disable Interrupt (DI) – This instruction is used to reset the value of enable flip-
flop hence disabling all the interrupts. No flags are affected by this instruction.

3. Set Interrupt Mask (SIM) – It is used to implement the hardware interrupts (RST
7.5, RST 6.5, RST 5.5) by setting various bits to form masks or generate output
data via the Serial Output Data (SOD) line. First the required value is loaded in
accumulator then SIM will take the bit pattern from it.

4. Read Interrupt Mask (RIM) – This instruction is used to read the status of the hardware

interrupts (RST 7.5, RST 6.5, RST 5.5) by loading into the A register a byte which

defines the condition of the mask bits for the interrupts. It also reads the condition of SID

(Serial Input Data) bit on the microprocessor.

Subroutine in 8085

In computers, a subroutine is a sequence of program instructions that perform a specific
task, packaged as a unit. This unit can then be used in programs wherever that
particular task have to be performed. A subroutine is often coded so that it can be
started (called) several times and from several places during one execution of the

program, including from other subroutines, and then branch back (return) to the next
instruction after the call, once the subroutine’s task is done. It is implemented by using
Call and Return instructions. The different types of subroutine instructions are

Unconditional Call instruction –
CALL address is the format for unconditional call instruction. After execution of this
instruction program control is transferred to a sub-routine whose starting address is
specified in the instruction. Value of PC (Program Counter) is transferred to the memory
stack and value of SP (Stack Pointer) is decremented by 2.

Conditional Call instruction –
In these instructions program control is transferred to subroutine and value of PC is
pushed into stack only if condition is satisfied.

INSTRUCTION PARAMETER COMMENT

CC 16-bit address Call at address if cy (carry flag) = 1

CNC 16-bit address Call at address if cy (carry flag) = 0

CZ 16-bit address Call at address if ZF (zero flag) = 1

CNZ 16-bit address Call at address if ZF (zero flag) = 0

CPE 16-bit address Call at address if PF (parity flag) = 1

CPO 16-bit address Call at address if PF (parity flag) = 0

CN 16-bit address Call at address if SF (signed flag) = 1

CP 16-bit address Call at address if SF (signed flag) = 0

Unconditional Return instruction –
RET is the instruction used to mark the end of sub-routine. It has no parameter. After
execution of this instruction program control is transferred back to main program from
where it had stopped. Value of PC (Program Counter) is retrieved from the memory
stack and value of SP (Stack Pointer) is incremented by 2.

Conditional Return instruction –
By these instructions program control is transferred back to main program and value of
PC is popped from stack only if condition is satisfied. There is no parameter for return
instruction.

INSTRUCTION COMMENT

RC Return from subroutine if cy (carry flag) = 1

RNC Return from subroutine if cy (carry flag) = 0

RZ Return from subroutine if ZF (zero flag) = 1

RNZ Return from subroutine if ZF (zero flag) = 0

RPE Return from subroutine if PF (parity flag) = 1

RPO Return from subroutine if PF (parity flag) = 0

RN Return from subroutine if SF (signed flag) = 1

RP Return from subroutine if SF (signed flag) = 0

Advantages of Subroutine –
1. Decomposing a complex programming task into simpler steps.
2. Reducing duplicate code within a program.
3. Enabling reuse of code across multiple programs.
4. Improving tractability or makes debugging of a program easy.

MEMORY MAPPING(BY GARIMA ROHELA)

Memory Mapping is a method to expand the memory of

the microprocessor. Microprocessor have a limited amount of memory.

Many-a-times it calls for more memory space. Being limited

in memory resource, microprocessor needs to be connected to

external memory devices like RAM/ROM/EEPROM.

8085 can access 64kB of external memory. It can be explained as- total number of

address lines in 8085 are 16, therefore it can access 2^16 = 65535 locations i.e.

64kB.

 2^n=number of memory locations. Where, n = number of address lines

Some of the RAM IC's are given as:

1. IC 2114 -> 1k x 4bits

2. IC 6116 -> 2k x 8bits

3. IC 6264 -> 8k x 8bits

Some of the ROM IC's are given as:

1. IC 2708 -> 1k x 8bits

2. IC 2716 -> 2k x 8bits

3. IC 2732 -> 4k x 8bits

4. IC 2764 -> 8k x 8bits

5. IC 27128 -> 16k x 8bits

6. IC 27256 -> 32k x 8bits

7. IC 2708 -> 64k x 8bits

Q. Design a minimum system to interface the following specification:

1. 32kB of RAM using 2 x 16kB RAM IC

2. 32kB of ROM using 2 x 16kB ROM IC

 Therefore the spacing for all the 4 ICs are same due to same size of memory ie.

3FFFH.

 The number of address lines required by each IC's is 14.

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 spacing IC details

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000H ROM IC -1

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3FFFH

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4000H ROM IC- 2

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7FFFH

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8000H RAM IC- 3

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 BFFFH

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C000H RAM IC- 4

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 FFFFH

MEMORY MAPPED I/O AND I/O MAPPED I/O (ISOLATED I/O)

Memory mapped I/O and Isolated I/O

As a CPU needs to communicate with the various memory and input-output devices
(I/O) as we know data between the processor and these devices flow with the help of
the system bus. There are three ways in which system bus can be allotted to them :

1. Separate set of address, control and data bus to I/O and memory.

2. Have common bus (data and address) for I/O and memory but separate control
lines.

3. Have common bus (data, address, and control) for I/O and memory.
In first case it is simple because both have different set of address space and instruction
but require more buses.

Isolated I/O –Then we have Isolated I/O in which we Have common bus(data and

address) for I/O and memory but separate read and write control lines for I/O. So when
CPU decode instruction then if data is for I/O then it places the address on the address
line and set I/O read or write control line on due to which data transfer occurs between
CPU and I/O. As the address space of memory and I/O is isolated and the name is so.
The address for I/O here is called ports. Here we have different read-write instruction for

both I/O and memory.

Memory Mapped I/O –

In this case every bus in common due to which the same set of instructions work for
memory and I/O. Hence we manipulate I/O same as memory and both have same
address space, due to which addressing capability of memory become less because
some part is occupied by the I/O.

Differences between memory mapped I/O and isolated I/O –

ISOLATED I/O MEMORY MAPPED I/O

Memory and I/O have separate

address space Both have same address space

All address can be used by the

memory

Due to addition of I/O

addressable memory become

less for memory

Separate instruction control read

and write operation in I/O and

Memory

Same instructions can control

both I/O and Memory

In this I/O address are called

ports.

Normal memory address are for

both

More efficient due to separate

buses Lesser efficient

Larger in size due to more buses Smaller in size

It is complex due to separate

separate logic is used to control

both.

Simpler logic is used as I/O is

also treated as memory only.

8255 (programmable peripheral interface)PPI

 (by Garima Rohela)

8255 is a popularly used parallel, programmable input-output
device. It can be used to transfer data under various condition from
simple input-output to interrupt input-output. This is economical,
functional, flexible but is a little complex and general purpose i/o
device that can be used with almost any microprocessor.

8255 PIN DIAGRAM

It has 40 pin architecture and operates in +5v regulated power
supply. It has 24 pins that can be grouped in two 8-bit parallel ports:
A and B called Port A(PA) and Port B(PB) with the remaining eight
known as Port C(PC). Port C can be further divided into groups of
4-bits ports named Cupper(Cu) and Clower(Cl).

8255 Pin Diagram of Microprocessor.

https://www.eeeguide.com/wp-content/uploads/2018/08/Pin-Diagram-of-8255-Microprocessor.jpg

Port and register select signals summer

8255 Block Diagram:

Fig. shows the internal block diagram of 8255. It consists of data bus buffer, control
logic and Group A and Group B controls.

Block Diagram of 8255

Data Bus Buffer:

This tri-state bi-directional buffer is used to interface the internal
data bus of 8255 Pin Diagram to the system data bus. Input or
Output instructions executed by the CPU either Read data from, or
Write data into the buffer. Output data from the CPU to the ports or
control register, and input data to the CPU from the ports or status
register are all passed through the buffer.

Control Logic:

The control logic block accepts control bus signals as well as inputs
from the address bus, and issues commands to the individual
group control blocks (Group A control and Group B control). It
issues appropriate enabling signals to access the required
data/control words or status word. The input pins for the control
logic section are described here.

Group A and Group B Controls:

Each of the Group A and Group B control blocks receives control
words from the CPU and issues appropriate commands to the ports
associated with it. The Group A control block controls Port A and
PC7-PC4 while the Group B control block controls Port B and PC3-
PC0.

Port A :

This has an 8-bit latched and buffered output and an 8-bit input
latch. It can be programmed in three modes: mode 0, mode 1 and
mode 2.

Port B :

This has an 8-bit data I/O latch/ buffer and an 8-bit data input buffer.
It can be programmed in mode 0 and mode 1.

Port C :

This has one 8-bit unlatched input buffer and an 8-bit output
latch/buffer. Port C can be splitted into two parts and each can be
used as control signals for ports A and B in the handshake mode.
It can be programmed for bit set/reset operation.

Modes of Operation of 8255 Microprocessor:
It works in two modes:

1. Bit set reset (BSR) mode
2. Input/output (I/O) mode

Bit Set-Reset (BSR) Mode:

The individual bits of Port C can be set or reset by sending out a
single OUT instruction to the control register. When Port C is used
for control/status operation, this feature can be used to set or reset
individual bits.

I/O Modes:
Mode 0: Simple input/output:

In this mode, ports A and B are used as two simple 8-bit I/O ports
and Port C as two 4-bit ports. Each port (or half – port, in case of
C) can be programmed to function as simply an input port or an
output port. The input/output features in Mode 0 are as follows:

1. Outputs are latched.

2. 2. Inputs are buffered, not latched.

3. Ports do not have handshake or interrupt capability.

Mode 1: Input/Output with handshake:

In this mode, input or output data transfer is controlled by
handshaking signals. Handshaking signals are used to transfer
data between devices. whose data transfer speeds are not same.
For example, computer can send data .to the printer with large
speed but printer can’t accept data and print data with this rate. So
computer has to send data with the speed with which printer can
accept. This type of data transfer is achieved by using handshaking
signals along-with data signals. Fig. shows data transfer between
computer and printer using handshaking signals.

Data transfer between computer and printer using handshake signals

These handshaking signals are used to tell computer whether
printer is ready to accept the data or not. If printer is ready to accept
the data then after sending data on data bus, computer uses
another handshaking signal (STB) to tell printer that valid data is
available on the data bus.

The 8255 Pin Diagram mode 1 which supports handshaking has
following features.

1. Two ports (A and B) function as 8-bit I/O ports. They, can be
configured either as input or output ports.

2. Each port uses three lines from Port C as handshake
signals. The remaining two lines of. Port C can be used for
simple I/O functions.

3. Input and output data are latched.

4. Interrupt logic is supported.

5. Mode 2 : Bi-directional I/O data transfer:

This mode allows bi-directional data transfer (transmission and
reception) over a single 8-bit data bus using handshaking signals.
This feature is available only in Group A with Port A as the 8-bit
bidirectional data bus; and PC3 – PC7 are used for handshaking
purpose. In this mode, both inputs and outputs are latched. Due to
use of a single 8-bit data bus for bi-directional data transfer, the
data sent out by the CPU through Port A appears on the bus
connecting it to the peripheral, only when the peripheral requests
it. The remaining lines of Port C i.e. PC0-PC2 can be used for simple
I/O functions. The Port B can be programmed in mode 0 or in mode
1. When Port B is programmed in mode 1, PC0-PC2 lines of Port C
are used as handshaking signals.

Control Word Formats:

A high on the RESET pin causes all 24 lines of the three 8-bit ports
to be in the input mode. All flip-flops are cleared and the interrupts
are reset. This condition is maintained even after the RESET goes
low. The ports of the 8255 Pin Diagram can then be programmed

for any other mode by writing a single control word into the control
register, when required.

For Bit Set/Reset Mode:

The eight possible combinations of the states of bits D3 –
D1 (B2 B1 B0) in the Bit Set-Reset format (BSR) determine
particular bit in PC0 – PC7 being set or reset as per the status of bit
D0. A BSR word is to be written for each bit that is to be set or reset.
For example, if bit PC3 is to be set and bit PC4 is to be reset, the
appropriate BSR words that will have to be loaded into the control
register will be, 0XXX0111 and 0XXX1000, respectively, where x
is don’t care.

The BSR word can also be used for enabling or disabling interrupt
signals generated by Port C when the 8255 Pin Diagram is
programmed for Mode 1 or 2 operation. This is done by setting or
resetting the associated bits of the interrupts. This is described in
detail in next section.

For I/O Mode:
The control words for both, mode definition and Bit Set –
Reset are loaded into the same control register, with bit D7 used
for specifying whether the word loaded into the control register is

http://www.circuitstoday.com/

a mode definition word or Bit Set-Reset word. If D7 is high, the
word is taken as a mode definition word, and if it is low, it is taken
as a Bit Set-Reset word. The appropriate bits are set or reset
depending on the type of operation desired, and loaded into the
control register.

https://www.eeeguide.com/wp-content/uploads/2018/08/Pin-Diagram-of-8255-Microprocessor-3.jpg
https://www.eeeguide.com/wp-content/uploads/2018/08/Pin-Diagram-of-8255-Microprocessor-3.jpg

DMA CONTROLLER 8237/8257

 (by Garima Rohela)

Introduction of 8237

Direct Memory Access (DMA) is a method of allowing data to be

moved from one location to another in a computer without

intervention from the central processor (CPU).

 It is also a fast way of transferring data within (and

sometimes between) computer.

 The DMA I/O technique provides direct access to the

memory while the microprocessor is temporarily disabled.

 The DMA controller temporarily borrows the address bus,

data bus and control bus from the microprocessor and

transfers the data directly from the external devices to a

series of memory locations (and vice versa).

 Basic DMA Operation:

 Two control signals are used to request and acknowledge a

direct memory access (DMA) transfer in the microprocessor-

based system.

1. The HOLD signal as an input (to the processor) is used

to request a DMA action.

2. The HLDA signal as an output that acknowledges the

DMA action.

 When the processor recognizes the hold, it stops its

execution and enters hold cycles.

 HOLD input has higher priority than INTR or NMI.

 The only microprocessor pin that has a higher priority than a

HOLD is the RESET pin.

 HLDA becomes active to indicate that the processor has

placed its buses at high-impedance state.

 Basic DMA Definitions

 Direct memory accesses normally occur between an I/O

device and memory without the use of the microprocessor.

1. A DMA read transfers data from the memory

to the I/O device.

2. A DMA write transfers data from an I/O device

to memory.

 The system contains separate memory and I/O control

signals.

 Hence the Memory & the I/O are controlled simultaneously

 The DMA controller provides memory with its address, and

the controller signal selects the I/O device during the

transfer.

 Data transfer speed is determined by speed of the memory

device or a DMA controller.

 In many cases, the DMA controller slows the speed of the

system when transfers occur.

 The serial PCI (Peripheral Component Interface) Express bus

transfers data at rates exceeding DMA transfers.

 This in modern systems has made DMA is less important.

CPU having the control over the bus

When DMA operates

The 8237 DMA Controller

 The 8237 supplies memory & I/O with control signals and

memory address information during the DMA transfer.

 It is actually a special-purpose microprocessor whose job is

high-speed data transfer between memory and I/O

 8237 is not a discrete component in modern microprocessor-based

systems.

 It appears within many system controller chip sets

 8237 is a four-channel device compatible with 8086/8088,

adequate for small systems.

 Expandable to any number of DMA channel inputs

 8237 is capable of DMA transfers at rates up to 1.6MB per second.

 Each channel is capable of addressing a full 64K-byte section of
memory.

Block Diagram of 8237

8237 Internal Registers

CAR

 The current address register holds a 16-bit memory

address used for the DMA transfer.

 each channel has its own current address

 register for this purpose.

 When a byte of data is transferred during a DMA operation,

CAR is either incremented

or decremented. depending on how it is programmed

CWCR

 The current word count register programs a channel for the

number of bytes to transferred during a DMA action.

CR

 The command register programs the operation of the 8237

DMA controller.

 The register uses bit position 0 to select the memory-to-

memory DMA transfer mode.

1. Memory-to-memory DMA transfers use DMA channel

2. DMA channel 0 to hold the source address

3. DMA channel 1 holds the destination address

BA and BWC

 The base address (BA) and base word count (BWC)

registers are used when auto-initialization is selected for a

channel.

 In auto-initialization mode, these registers are used to reload

the CAR and CWCR after the DMA action is completed.

MR

 The mode register programs the mode of operation for a

channel.

 Each channel has its own mode register as selected by bit

positions 1 and 0.

1. Remaining bits of the mode register select operation,

auto-initialization, increment/decrement, and mode for

the channel

BR

 The bus request register is used to request

a DMA transfer via software.

1. very useful in memory-to-memory transfers,

where an external signal is not available to begin

the DMA transfer

MRSR

 The mask register set/reset sets or clears the channel

mask.

1. if the mask is set, the channel is disabled

2. the RESET signal sets all channel masks

to disable them

MSR

 The mask register clears or sets all of

the masks with one command instead of individual channels,

as with the MRSR.

SR

 The status register shows status of each DMA channel.

The TC bits indicate if the channel has reached its terminal

count (transferred all its bytes).

 When the terminal count is reached, the DMA transfer is

terminated for most modes

of operation.

 The request bits indicate whether the DREQ input for a given

channel is active.

8237 Software Commands

Master clear

Acts exactly the same as the RESET signal to the 8237. As

with the RESET signal, this command disables all channels

Clear mask register

 Enables all four DMA channels.

Clear the first/last flip-flop

Clears the first/last (F/L) flip-flop within 8237. The F/L flip-

flop selects which byte (low or high order) is read/written in

the current address and current count registers. if F/L = 0,

the low-order byte is selected if F/L = 1, the high-order byte

is selected Any read or write to the address or count register

automatically toggles the F/L flip-flop.

Pin Diagram and Pin description of 8237

VCC: POWER: a5V supply

VSS: GROUND: Ground.

CLK Input: CLOCK INPUT : Clock Input controls the internal

operations of the 8237A and its rate of data transfers. The input

may be driven at up to 5 MHz for the 8237A-5.

CS Input:

CHIP SELECT: Chip Select is an active low input used to select the

8237A as an I/O device during the Idle cycle. This allows CPU

communication on the data bus.

RESET Input:

RESET: Reset is an active high input which clears the Command,

Status, Request and Temporary registers. It also clears the first/

last flip/flop and sets the Mask register. Following a Reset the

device is in the Idle cycle.

READY Input:

READY: Ready is an input used to extend the memory read and

write pulses from the 8237A to accommodate slow memories or

I/O peripheral devices. Ready must not make transitions during its

specified setup/hold time.

HLDA Input:

HOLD ACKNOWLEDGE: The active high Hold Acknowledge from

the CPU indicates that it has relinquished control of the system

busses.

DREQ0 ±DREQ3 Input:

DMA REQUEST: The DMA Request lines are individual

asynchronous channel request inputs used by peripheral circuits

to obtain DMA service. In fixed Priority, DREQ0 has the highest

priority and DREQ3 has the lowest priority. A request is generated

by activating the DREQ line of a channel. DACK will acknowledge

the recognition of DREQ signal. Polarity of DREQ is

programmable. Reset initializes these lines to active high. DREQ

must be maintained until the corresponding DACK goes active.

DB0 ±DB7:

DATA BUS: The Data Bus lines are bidirectional three-state signals

connected to the system data bus. The outputs are enabled in the

Program condition during the I/O Read to output the contents of

an Address register, a Status register, the Temporary register or a

Word Count register to the CPU. The outputs are disabled and the

inputs are read during an I/O Write cycle when the CPU is

programming the 8237A control registers. During DMA cycles the

most significant 8 bits of the address are output onto the data bus

to be strobed into an external latch by ADSTB. In memory-to-

memory operations, data from the memory comes into the 8237A

on the data bus during the read-from-memory transfer. In the

write-to-memory transfer, the data bus outputs place the data

into the new memory location.

IOR Input/Output:

I/O READ: I/O Read is a bidirectional active low three-state line. In

the Idle cycle, it is an input control signal used by the CPU to read

the control registers. In the Active cycle, it is an output control

signal used by the 8237A to access data from a peripheral during

a DMA Write transfer.

IOW Input/Output:

I/O WRITE: I/O Write is a bidirectional active low three-state line.

In the Idle cycle, it is an input control signal used by the CPU to

load information into the 8237A. In the Active cycle, it is an output

control signal used by the 8237A to load data to the peripheral

during a DMA Read transfer.

EOP Input/Output:

END OF PROCESS: End of Process is an active low bidirectional

signal. Information concerning the completion of DMA services is

available at the bidirectional EOP pin. The 8237A allows an

external signal to terminate an active DMA service. This is

accomplished by pulling the EOP input low with an external EOP

signal. The 8237A also generates a pulse when the terminal count

(TC) for any channel is reached. This generates an EOP signal

which is output through the EOP line. The reception of EOP, either

internal or external, will cause the 8237A to terminate the service,

reset the request, and, if Auto initialize is enabled, to write the

base registers to the current registers of that channel. The mask

bit and TC bit in the status word will be set for the currently active

channel by EOP unless the channel is programmed for Auto

initialize. In that case, the mask bit remains unchanged. During

memory-to-memory transfers, EOP will be output when the TC for

channel 1 occurs. EOP should be tied high with a pull-up resistor if

it is not used to prevent erroneous end of process inputs.

A0 ±A3 Input/Output:

ADDRESS: The four least significant address lines are bidirectional

three-state signals. In the Idle cycle they are inputs and are used

by the CPU to address the register to be loaded or read. In the

Active cycle they are outputs and provide the lower 4 bits of the

output address.

A4 ±A7 Output:

ADDRESS: The four most significant address lines are three-state

outputs and provide 4 bits of address. These lines are enabled

only during the DMA service.

HRQ Output:

HOLD REQUEST: This is the Hold Request to the CPU and is used

to request control of the system bus. If the corresponding mask

bit is clear, the presence of any valid DREQ causes 8237A to issue

the HRQ.

DACK0 ±DACK3 Output:

DMA ACKNOWLEDGE: DMA Acknowledge is used to notify the

individual peripherals when one has been granted a DMA cycle.

The sense of these lines is programmable. Reset initializes them to

active low.

AEN Output:

ADDRESS ENABLE: Address Enable enables the 8-bit latch

containing the upper 8 address bits onto the system address bus.

AEN can also be used to disable other system bus drivers during

DMA transfers. AEN is active HIGH.

ADSTB Output:

ADDRESS STROBE: The active high, Address Strobe is used to

strobe the upper address byte into an external latch.

MEMR Output

MEMORY READ: The Memory Read signal is an active low three-

state output used to access data from the selected memory

location during a DMA Read or a memory-to-memory transfer.

MEMW Output:

MEMORY WRITE: The Memory Write is an active low three-state

output used to write data to the selected memory location during

a DMA Write or a memory-to-memory transfer.

PIN5 Input:

PIN5: This pin should always be at a logic HIGH level. An internal

pull-up resistor will establish a logic high when the pin is left

floating. It is recommended however, that PIN5 be connected to

VCC

DATA TRANSFER TECHNIQUES

 (by Garima Rohela)

Data transfer schemes of 8085 microprocessor

In 8085 microprocessor based systems several input and output devices are connected.
We know that data transfer may take place between microprocessor and memory,
microprocessor and I/O devices and memory & I/O devices. As we know not much of the
problems arise for the data communication between microprocessor and memory as
same technology is used in the manufacturing of memory and microprocessor.
The main reason for that the speed of the memory is almost compatible with the speed
of 8085 microprocessor. Now the main concern is for the data transfer between the
microprocessor and I/O devices. The main problems arise due to mismatch of the speed
of the I/O devices and the speed of microprocessor or memory. To overcome this problem
of speed mismatch between the microprocessor and I/O devices we have to do
something. For that reason only we introduce data transfer schemes of 8085
microprocessor. So following data transfer schemes may be considered for smooth data
transfer process. The data transfer schemes of 8085 microprocessor were categorised
depending upon the capabilities of I/O devices for accepting serial or parallel data.

The 8085 microprocessor is a parallel device. That means it
transfers eight bits of data simultaneously over eight data lines
(parallel I/O mode). However in many situations, the parallel I/O
mode is either impractical or impossible. For example, parallel
data communication over a long distance becomes very

expensive. Similarly, parallel data communication is not possible
with devices such as CRT terminal or Cassette tape etc.

Serial I/O mode transfer

For these devices and for these reasons serial I/O mode is used.
In serial I/O mode transfer a single bit of data on a single line at a
time. For serial I/O data transmission mode, 8-bit parallel word is
converted to a stream of eight serial bit using parallel-to-serial
converter. Similarly, in serial reception of data, the microprocessor
receives a stream of 8-bit one by one which are then converted to
8- bit parallel word using serial-to-parallel converter. For this
purpose data transfer schemes of 8085 microprocessor are
introduced.

Parallel data transfer scheme

Parallel data transfer scheme is faster than serial I/O transfer. in
parallel data transfer 8-bit data send all together with 8 parallel
wire. In 8085 microprocessor mainly three types of parallel data
transfer scheme we observed. Those are

 Programmed I/O Data Transfer
 Interrupt Driven I/O Data Transfer
 Direct Memory Access (DMA) Data Transfer

Programmed I/O Data Transfer scheme of 8085 microprocessor

Programmed I/O Data Transfer scheme of 8085 microprocessor
is a simple parallel data transfer scheme. This method of data
transfer is generally used in the simple microprocessor systems. It
is obvious that where speed is unimportant. This method uses
instructions to get the data into or out of the microprocessor.
Programmed I/O Data Transfer scheme of 8085 microprocessor
can be work on synchronous or asynchronous mode. The data

http://www.electronicsengineering.nbcafe.in/programmed-i-o-data-transfer-scheme-8085-microprocessor/
http://www.electronicsengineering.nbcafe.in/interrupt-driven-i-o-data-transfer/
http://www.electronicsengineering.nbcafe.in/direct-memory-access-dma-data-transfer/

transfer can be synchronous or asynchronous it completely
depends upon the type and the speed of the I/O devices.

Synchronous type of data transfer

Synchronous type of data transfer can be used when the speed of
the I/O devices matches with the speed of the 8085
microprocessor. So for synchronization established between I/O
device and microprocessor we need common clock pulse. This
common clock pulse synchronizes the microprocessor and the I/O
devices. Synchronous type of data transfer scheme because of the
matching of the speed, the microprocessor does not have to wait
for the availability of the data. The microprocessor immediately
sends data for the transfer as soon as the microprocessor issues a
signal.

The asynchronous data transfer

The asynchronous data transfer method is used when the speed of
the I/O devices is slower than the speed of the microprocessor.
Because of the mismatch of the speed, the internal timing of the
I/O device is independent from the microprocessor. That is why two
units are said to be asynchronous to each other. The asynchronous
data transfer is normally implemented using ‘handshaking’ mode.
Now question is what is handshaking mode? In the handshaking
mode some signals are exchanged between the I/O device and
microprocessor before the data transfer takes place.

By this handshaking the microprocessor has to check the status to
the input/output device. Now if the device is ready for the data
transfer or not.
 First step of microprocessor is initiates the I/O device to get

ready.
 Then status of the I/O device is continuously checked by the

microprocessor.

 This process remain continues until the I/O device becomes
ready.

 After that microprocessor sends instructions to transfer the
data.

Now form this bellow figure, the microprocessor sends a ready
signal to I/O device. When the device is ready to accept the data,
the I/O device sends an ‘ACK’ (Acknowledge) signal to
microprocessor. By sending ACK, it indicating that the I/O device
has acknowledged the ‘Ready’ signal. Now finally it is ready for
the transfer of data.

Again in bellow figure shows the asynchronous handshaking
process to transfer the data from the I/O device to
microprocessor. In this case I/O device issues the ready signal to
microprocessor indicating that I/O device is ready to send the
data to microprocessor. In response to this signal, valid data
signal is sent by the microprocessor to I/O device and then the
valid data is put on the data bus for the transfer.

Interrupt Driven I/O Data Transfer

As we saw that in the programmed I/O data transfer method,
microprocessor is busy all the time in checking for the availability
of data from the slower I/O devices. And it also busy in checking if
I/O device is ready for the data transfer or not. In other words, in
this data transfer scheme, some of the microprocessor time is
wasted in waiting while an I/O device is getting ready. To
overcome this problem interrupt driven I/O data transfer
introduced.

The interrupt driven I/O data transfer method is very efficient
because no microprocessor time is wasted in waiting for an I/O
device to be ready. In this interrupt driven I/O data transfer
method the I/O device informs the microprocessor for the data
transfer whenever the I/O device is ready. This is achieved by
interrupting the microprocessor. As we know that the interrupt is
hardware facilities provided on the microprocessor.

http://www.electronicsengineering.nbcafe.in/programmed-i-o-data-transfer-scheme-8085-microprocessor/

Now come to the working process of interrupt driven I/O data
transfer. So the beginning the microprocessor initiates data
transfer by requesting the I/O device ‘to get ready’ and then
continue executing its original program rather wasting its time by
checking the status of I/O device. Whenever the device is ready
to accept or supply data, it informs the processor through a
control signal. This control signal known as interrupt (INTR)
signal. In response to this interrupt signal, the microprocessor
sends back an interrupt acknowledge signal to the I/O device. By
sending acknowledgement it indicating that it received the
request. It then suspends its job after executing the current
instruction. It saves the contents and status of program counter to
stack and jumps to the subroutine program.

 This subroutine program is called Interrupt Service Subroutine
(ISS) program. The ISS saves the processor status into stack; and
after executing the instruction for the data transfer, it restores the
processor status and then returns to main program.
several input/output devices may be connected to microprocessor
using Interrupt Driven Data Transfer Scheme. Following interrupt
request configuration may arise while interfacing the I/O devices to
microprocessor.
1. Single Interrupt system
2. Multi Interrupt System

Single Interrupt System

 When only one interrupt line is available with the microprocessor
and several I/O devices are to be connected, then the method is
known as Single Interrupt System.

Multi Interrupt System

 When the microprocessor has several interrupt terminals and
one I/O device is to be connected to each interrupt terminal, then it
is known as multi interrupt system. In this scheme, the number of
I/O devices to be connected to the interrupt lines should be equal
to or less than the number of interrupt terminals. In this way one
device is connected to each level of interrupt. So when a device
interrupts the microprocessor, it immediately knows which device
has interrupted. Such an interrupt scheme is known as vectored
interrupt.

Direct Memory Access (DMA) Data Transfer

As we discussed earlier that in programmed I/O or interrupt driven
I/O methods of data transfer between the I/O devices and external
memory is via the accumulator. Now think for bulk data transfer
from I/O devices to memory or vice-versa, these two methods
discussed above are time consuming and quite uneconomical even
though the speed of I/O devices matches with the speed of
microprocessor. Because in those methods the data is first
transferred to accumulator and then to concerned device.

To overcome those problem direct memory access data transfer
method is introduced. The Direct Memory Access (DMA) data
transfer method is used for bulk data transfer from I/O devices to
microprocessor or vice-versa. In this method I/O devices are
allowed to transfer the data directly to the external memory
without being routed through accumulator. For this reason the

microprocessor relinquishes the control over the data bus and
address bus, so that these can be used for transfer of data
between the devices.

Working principle of direct memory access data transfer

So now come to working principle of direct memory access data
transfer. For the data transfer using DMA process, a request to the
microprocessor in form of HOLD signal, by the I/O device is sent.
When microprocessor receipt of such request, the microprocessor
relinquishes the address and data buses and informs the I/O
devices of the situation by sending Acknowledge signal HLDA. The
I/O device withdraws the request when the data transfer between
the I/O device and external memory is complete.

If we discuss in brief about working principal of DMA controller.
Then we should mention that DMA controller is used with the
microprocessor that helps to generate the addresses for the data
to be transferred from the I/O devices. The peripheral device
sends the request signal (DMARQ) to the DMA controller and the
DMA controller in turn passes it to the microprocessor (HOLD
signal). On receipt of the DMA request the microprocessor sends
an acknowledge signal (HLDA) to the DMA controller. On receipt
of this signal (HLDA) the DMA controller sends a DMA
acknowledge signal (DMACK) to the I/O device. The DMA

controller then takes over the control of the buses of
microprocessor and controls the data transfer between RAM and
I/O device. When the data transfer is complete, DMA controller
returns the control over the buses to the microprocessor by
disabling the HOLD and DMACK signals.

Now question is how many way DMA can work? It may be
mentioned here that DMA transfer the data of the following types:

 Memory to I/O device
 I/O device to memory
 Memory to memory
 I/O device to I/O device

8086 microprocessor

 (by Garima Rohela)

8086 Microprocessor features:

1. It is 16-bit microprocessor
2. It has a 16-bit data bus, so it can read data from or write data to
memory and ports either 16-bit or 8-bit at
a time.
3. It has 20 bit address bus and can access up to 220 memory locations
(1 MB).
4. It can support up to 64K I/O ports
5. It provides 14, 16-bit registers
6. It has multiplexed address and data bus AD0-AD15 & A16-A19
7. It requires single phase clock with 33% duty cycle to provide internal
timing.
8. Prefetches up to 6 instruction bytes from memory and queues them
in order to speed up the processing.
9. 8086 supports 2 modes of operation
a. Minimum mode
b. Maximum mode

Architecture of 8086 microprocessor :

As shown in the figure, the 8086 CPU is divided into two independent
functional parts
o Bus Interface Unit(BIU)

o Execution Unit(EU)
Dividing the work between these two units speeds up processing.

BIU (Bus interface unit):

- It handles all transfers of data and addresses on the buses for the

execution unit.

- Sends out addresses

- Fetches instructions from memory.

- Read / write data from/to ports and memory i.e. handles all

transfers of data and addresses on the busses

EU (Execution unit):

- Tells BIU where to fetch instructions or data from

- Decodes instructions

- Executes instructions

Functional Block Diagram of 8086 Microprocessor

Instruction Decoder & ALU:

Decoder in the EU translates instructions fetched from the memory into

a series of actions which the EU carries out.16-bit ALU in the EU

performs actions such as AND, OR, XOR, increment, decrement etc.

FLAG Register:

It is a 16-bit register. 9-bit are used as different flags, remaining bits

unused

 OF DF IF TF SF ZF AF PF CF

Fig: 16-bit flag register

Out of 9-flags, 6 are conditional (status) flags and three are control

flags

Conditional flags:

These are set or reset by the EU on the basis of the results of some

arithmetic or logic operation. 8086 instructions check these flags to

determine which of two alternative actions should be done in executing

the instructions.

1. OF (Overflow flag): is set if there is an arithmetic overflow, i.e. the

size of the result exceeds the capacity of the destination location.

2. SF (Sign flag): is set if the MSB of the result is 1

3. ZF (Zero flag): is set if the result is zero

4. AF (Auxiliary carry flag): is set if there is carry from lower nibble to

upper nibble or from lower byte to upper byte

5. PF (Parity flag): is set if the result has even parity

6. CF (Carry flag): is set if there is carry from addition or borrow from

subtraction

Control flags:

They are set using certain instructions. They are used to control certain

operations of the processor.

1. TF (Trap flag): for single stepping through the program

2. IF (Interrupt flag): to allow or prohibit the interruption of a

program

3. DF (Direction flag): Used with string instructions

General purpose Registers (GPRs):

There are 8 GPRs AH, AL (Accumulator), BH, BL, CH, CL, DH, DL are used

to store 8 bit data.

AL register is also called the accumulator

Used individually for the temporary storage of data

GPRs can be used together (as register pair) to store 16-bit data words.

Acceptable register pairs are:

AH-AL pair AX register

BH-BL pair BX register (to store the 16-bit data as well as the base

address of the memory location)

CH-CL pair CX register (to store 16-bit data and can be used as counter

register for some instructions like loop)

DH-DL pair DX register (to store 16-bit data and also used to hold the

result of 16-bit data multiplication and division operation)

Pointer and Index registers:

 SP (Stack Pointer), BP (Base pointer), SI (Source Index), DI (Destination

index)

Pointer Registers:

The two pointer registers, SP and BP are used to access data in the

stack segment. The SP is used as offset from current Stack Segment

during execution of instruction that involve stack. SP is automatically

updated. BP contains offset address and is utilized in based addressing

mode. Overall, these are used to hold the offset address of the stack

address.

Index Registers:

EU also contains a 16-bit source index (SI) register and 16-bit

destination index (DI) register. These registers can be used for

temporary storage of data similarly as the general purpose registers.

However they are specially to hold the 16-bit offset of the data word.

SI and DI are used to hold the offset address of the data segment and

extra segment memory respectively.

Bus Interface Unit:

The QUEUE:

When EU is decoding or executing an instruction, bus will be free at

that time. BIU pre-fetches up to 6-instructions bytes to be executed and

places them in QUEUE. This improves the overall speed because in each

time of execution of new instruction, instead of sending address of next

instruction to be executed to the system memory and waiting from the

memory to send back the instruction byte, EU just picks up the fetched

instruction byte from the QUEUE.

The BIU stores these pre-fetched bytes in a first-in-first-out (FIFO)

register set called a queue. Fetching the next instruction while the

current instruction executes is called pipelining.

Segment Registers:

The BIU contains a dedicated address, which is used to produce the 20

bit address. The bus control logic of the BIU generates all the bus

control signals, such as the READ and WRITE signals, for memory and

I/O. The BIU also has four 16 bit segments registers namely:

1. Code segment: holds the upper 16-bits of the starting addresses

of the segment from which BIU is currently fetching instruction

code bytes.

2. Stack segment: store addresses and data while subprogram

executes

3. Extra segment: store upper 16-bits of starting addresses of two

memory segments that are used for data.

4. Data segment: store upper 16-bits of starting addresses of two

memory segments that are used for data.

Code Segment Register (CS) and Instruction Pointer (IP)

All program instructions located in memory are pointed using 16 bits of

segment register CS and 16 bits offset contained in the 16 bit

instruction pointer (IP). The BIU computes the 20 bit physical address

internally using the logical address that is the contents of CS and IP. 16

bit contents of CS will be shifted 4 bits to the left and then adding the

16 bit contents of IP. Thus, all instructions of the program are relative

contents of IP. Simply stated, CS contains the base or start of the

current code segment, and IP contains the distance or offset from this

address to the next instruction byte to be fetched.

Above fig shows addition of IP to CS to produce the physical address

of code byte Stack Segment Register (SS) and Stack Pointer (SP)

The stack segment registers points to the current stack. The 20 bit

physical stack address is calculated from the SS and SP. The

programmer can also use Base Pointer (BP) instead of SP for

addressing. In this case, the A stack is a section of memory to store

addresses and data while a subprogram is in progress. 20 bit physical

address is calculated using SS and BP.

Pin diagram of 8086 microprocessor

Pin diagram of 8086 microprocessor is as given below:

Intel 8086 is a 16-bit HMOS microprocessor. It is available in 40
pin DIP chip. It uses a 5V DC supply for its operation. The 8086
uses 20-line address bus. It has a 16-line data bus. The 20 lines
of the address bus operate in multiplexed mode. The 16-low order
address bus lines have been multiplexed with data and 4 high-
order address bus lines have been multiplexed with status
signals.

AD0-AD15 : Address/Data bus. These are low order address
bus. They are multiplexed with data. When AD lines are used to
transmit memory address the symbol A is used instead of AD, for
example A0-A15. When data are transmitted over AD lines the
symbol D is used in place of AD, for example D0-D7, D8-D15 or
D0-D15.

A16-A19 : High order address bus. These are multiplexed with
status signals.

S2, S1, S0 : Status pins. These pins are active during T4, T1 and
T2 states and is returned to passive state (1,1,1 during T3 or Tw
(when ready is inactive). These are used by the 8288 bus
controller for generating all the memory and I/O operation) access
control signals. Any change in S2, S1, S0 during T4 indicates the
beginning of a bus cycle.

S2 S1 S0 CHARACTERISTICS

0 0 0 Interrupt acknowledge

0 0 1 Read I/O port

0 1 0 Write I/O port

0 1 1 Halt

1 0 0 Code access

1 0 1 Read memory

1 1 0 Write memory

1 1 1 Passive state

A16/S3, A17/S4, A18/S5, A19/S6 :
 The specified address lines are multiplexed with corresponding
status signals.

A17/S4 A16/S3 FUNCTION

0 0 Extra segment access

0 1 Stack segment access

1 0 Code segment access

1 1 Data segment access

BHE’/S7 : Bus High Enable/Status. During T1 it is low. It is used
to enable data onto the most significant half of data bus, D8-D15.
8-bit device connected to upper half of the data bus use BHE’
(Active Low) signal. It is multiplexed with status signal S7. S7
signal is available during T2, T3 and T4.
RD’: This is used for read operation. It is an output signal. It is
active when low.

READY : This is the acknowledgement from the memory or slow
device that they have completed the data transfer. The signal
made available by the devices is synchronized by the 8284A
clock generator to provide ready input to the microprocessor. The
signal is active high(1).

INTR : Interrupt Request. This is triggered input. This is sampled
during the last clock cycles of each instruction for determining the
availability of the request. If any interrupt request is found
pending, the processor enters the interrupt acknowledge cycle.
This can be internally masked after resulting the interrupt enable

flag. This signal is active high(1) and has been synchronized
internally.

NMI : Non maskable interrupt. This is an edge triggered input
which results in a type II interrupt. A subroutine is then vectored
through an interrupt vector lookup table which is located in the
system memory. NMI is non-maskable internally by software. A
transition made from low(0) to high(1) initiates the interrupt at the
end of the current instruction. This input has been synchronized
internally.

INTA’ : Interrupt acknowledge. It is active low(0) during T2, T3
and Tw of each interrupt acknowledge cycle.

MN/MX’ : Minimum/Maximum. This pin signal indicates what
mode the processor will operate in.

RQ’/GT1′, RQ’/GT0′ : Request/Grant. These pins are used by
local bus masters used to force the microprocessor to release the
local bus at the end of the microprocessor’s current bus cycle.
Each of the pin is bi-directional. RQ’/GT0′ have higher priority
than RQ’/GT1′.

LOCK’ : Its an active low pin. It indicates that other system bus
masters have not been allowed to gain control of the system bus
while LOCK’ is active low(0). The LOCK signal will be active until
the completion of the next instruction.

TEST’ : This examined by a ‘WAIT’ instruction. If the TEST pin
goes low(0), execution will continue, else the processor remains
in an idle state. The input is internally synchronized during each of
the clock cycle on leading edge of the clock.

CLK : Clock Input. The clock input provides the basic timing for
processing operation and bus control activity. Its an asymmetric
square wave with a 33% duty cycle.

RESET : This pin requires the microprocessor to terminate its
present activity immediately. The signal must be active high(1) for
at least four clock cycles.

Vcc : Power Supply(+5V D.C.)
GND : Ground

QS1,QS0 : Queue Status. These signals indicate the status of the
internal 8086 instruction queue according to the table shown
below

QS1 QS0 STATUS

0 0 No operation

0 1 First byte of op code from queue

1 0 Empty the queue

1 1 Subsequent byte from queue

DT/R : Data Transmit/Receive. This pin is required in minimum
systems, that want to use an 8286 or 8287 data bus transceiver.
The direction of data flow is controlled through the transceiver.

DEN : Data enable. This pin is provided as an output enable for
the 8286/8287 in a minimum system which uses transceiver. DEN

is active low(0) during each memory and input-output access and
for INTA cycles.

HOLD/HOLDA : HOLD indicates that another master has been
requesting a local bus .This is an active high(1). The
microprocessor receiving the HOLD request will issue HLDA
(high) as an acknowledgement in the middle of a T4 or T1 clock
cycle.

ALE : Address Latch Enable. ALE is provided by the
microprocessor to latch the address into the 8282 or 8283
address latch. It is an active high(1) pulse during T1 of any bus
cycle. ALE signal is never floated, is always integer.

Difference between Minimum Mode and Maximum Mode

Minimum mode Maximum Mode
In minimum mode there can be only one
processor i.e. 8086.

In maximum mode there can be multiple
processors with 8086, like 8087 and 8089.

 MN/MX is 1 to indicate minimum mode. MN/MX is 0 to indicate maximum mode.
 ALE for the latch is given by 8086 as it is
the only processor in the circuit.

ALE for the latch is given by 8288 bus
controller as there can be multiple processors
in the circuit.

 DEN¯and DT/R for the trans-receivers

are given by 8086 itself.
DT/R’ for the trans-receivers are given by

8288 bus controller.
 Direct control signals M/IO’, RD’ and

WR’ are given by 8086.
Instead of control signals, each processor

generates status signals called S2’ S1’ and

S0’
 Control signals M/IO’ RD’ and WR’ are

decoded by a 3:8 decoder like 74138.
Status signals S2’ S1’ and S0’ are decoded

by a bus controller like 8288 to produce
control signals.

 INTA’is given by 8086 in response to an

interrupt on INTR line.
INTA¯ is given by 8288 bus controller in
response to an interrupt on INTR line.

Differences between 8085 and 8086

microprocessor

In the changing world of technologies, the devices used are also changing.
Let us take a look at the changes between 8085 series of microprocessors
and 8086 series of microprocessors.

SERIAL

NO. 8085 MICROPROCESSOR 8086 MICROPROCESSOR

1 The data bus is of 8 bits. The data bus is of 16 bits.

2 The address bus is of 16 bits. The address bus is of 20 bits.

3. The memory capacity is 64

KB.Also 8085 Can

Perform Operation Upto

2^8 ie. 256 numbers. A

number greater than this is

to taken multiple times in

8 bit data bus.

The memory capacity is 1

MB.Also 8086 Can Perform

Operation upto 2^16 ie. 65,536

numbers.

4. The input/output port

addresses are of 8 bits.

The input/output port

addresses are of 8 bits.

SERIAL

NO. 8085 MICROPROCESSOR 8086 MICROPROCESSOR

5 The operating frequency

is 3.2 MHz.

The operating frequency is 5

MHz, 8MHZ,10MHZ.

6.8085 MP has Single Mode

Of Operation.

8086 MP has Two Modes Of

Operation.

1. Minimum Mode = SingLe

CPU PROCESSOR

2. Maximum Mode = Multiple

CPU PROCESSOR.

7.It not have multiplication and

division instructions.

It have multiplication and

division instructions.

 8.It does not support pipe-lining.

It supports pipe-lining as it has

two independent units

Execution Unit (EU) and Bus

Interface Unit (BIU).

9.It does not support instruction

queue. It supports instruction queue.

SERIAL

NO. 8085 MICROPROCESSOR 8086 MICROPROCESSOR

10.Memory space is not

segmented. Memory space is segmented.

11.It consists of 5 flags(Sign

Flag, Zero Flag, Auxiliary Carry

Flag, Parity Flag, Carry Flag).

It consists of 9 flags(Overflow

Flag, Direction Flag, Interrupt

Flag, Trap Flag, Sign Flag,

Zero Flag, Auxiliary Carry

Flag, Parity Flag, Carry Flag).

	Microprocessor 8085 & Peripherals Interfacing Devices.pdf
	8085 INTRODUCTION
	Slide 2
	8085 PIN DIAGRAM
	8085 PIN DESCRIPTION
	Slide 5
	Slide 6
	8085 ARCHITECTURE
	Arithmetic and Logical group
	Arithmetic and Logical group
	Register Group
	Slide 11
	INSTRUCTION REGISTER,DECODER & CONTROL
	INTERRUPT CONTROL
	INSTRUCTIONS SET OF 8085
	DATA TRANSFER GROUP
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	ARITHMETIC GROUP
	ARITHMEIC GROUP
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	LOGICAL GROUP
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	BRANCH GROUP
	CALL address(Unconditional CALL from address)
	BRANCH GROUP
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	STACK AND MACHINE CONTROL
	Slide 57
	Slide 58
	ADDRESSING MODES OF 8085
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	PROGRAM
	Slide 65
	Slide 66
	Slide 67
	TIMING AND STATE DIAGRAM
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	SUBROUTINE
	Slide 74
	8085 Memory Interfacing
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	8255 PIN DIAGRAM
	8255 BLOCK DIAGRAM
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	8255 MODES
	INTERFACING 8085 & 8255
	INTERFACING 8085 & 8255
	Slide 89
	Slide 90
	INTERFACING STEPPER MOTOR with 8255
	SERIAL COMMUNICATION
	Slide 93
	Slide 94
	TRANSMISSION FORMATS
	INTERRUPTS IN 8085
	Slide 97
	Slide 98
	Slide 99
	INTERRUPT PRIORITY
	SIM INSTRUCTION
	Slide 102
	RIM INSTRUCTION
	8253 PIT
	8253 Features
	CONTROL WORD
	CONTROL WORD
	8253 SQUARE WAVE
	Slide 109
	DMA
	8257 DMA
	OPERRATING MODES OF 8257

	instruction set pdf.pdf
	3. addressing modes in 8085.pdf
	5. Interrupts and subroutine in 8085 microprocessor.pdf
	6. concept of memory mapping.pdf
	7. 8255_PPI.pdf
	8. 8237_DMA_controller.pdf
	9. data transfer_techniques of 8085.pdf
	10. MP_8086.pdf

