Lesson Plan

Name of Faculty	:	Rahul Kaushik
Discipline	:	Computer Engg.
Semester	:	3 rd Sem
Subject	:	Digital Electronics
Lesson Plan Duration	:	15 Weeks

Week	Theory		Practical	
Ĩ	Lecture	Торіс	Pr	Торіс
	Day		Day	-
	_			
	1	Introduction a) Define digital and analog signals and systems, difference between analog and digital signals		Study of logic breadboard with verification of truth table for AND, OR,
1	2	b) Need of digitization and applications of digital systems	1	NOT, NAND, EX- OR, NOR gate
	3	Number Systems a) Decimal, binary, octal, hexadecimal number systems		
	4	b) Conversion of number from one number system to another including decimal points	2	Verification of NAND and NOR gate as universal gates
2	5	c) Binary addition, subtraction, multiplication, division,		
	6	1's and 2's complement method of subtractiond) BCD code numbers and their limitations,		
	7	addition of BCD coded numbers, conversion of BCD to decimal and vice-versa		Construction of half-adder and full
3	8	e) Excess-3 code, gray code, binary to gray and gray to binary conversion	3	EX-OR and NAND gate and verification of their
	9	f) Concept of parity, single and double parity, error detection and correction using parity		operation
4	10	Revision		Verify the operation of a) multiplexer using
	11	Logic Gates a) Logic gates, positive and negative logic, pulse waveform, definition,	4	
	12	symbols, truth tables, pulsed operation of NOT, OR, AND, NAND,		
5	13	NOR, EX-OR, EX-NOR gates	5	b)de-multiplexer

	14	b) NAND and NOR as universal logic gates		using an IC
	15	Revision	-	
	16	Logic Simplification) a) Rules and laws of Boolean algebra, logic expression.		Revision
6	17	Demorgan theorems, their proof b) Sum of products form (minterm), Product of sum form (maxterms),	6	
	18	simplification of Boolean expressions with the help of Rules and laws of Boolean algebra		
	19	c) Karnaugh mapping techniques upto 4 variables and their applications for simplification of Boolean expression		Verify the operation of BCD to decimal decoder using an IC
7	20	Arithmetic Circuits a) Half adder, full adder circuits and their operation	7	
	21	b) Parallel binary adder, 2-bit and 4-bit binary full adder, block diagram, working		
	22	Revision		Verify the operation of BCD to 7 segment decoder using an IC
8	23	Multiplexer/Demultiplexer a) Basic functions, symbols and logic diagrams of 4-inputs and 8-inputs multiplexers,	8	
	24	b) Function/utility of 16 and 32 inputs multiplexers,		
	25	c) Realization of Boolean expression using multiplexer/demultiplexers		Verify operation of SR, JK, D-flip-flop
9	26	Revision	9	master slave JK filp-flop using IC
	2/	Decoders, Display Devices and Associated Circuits		
10	28	a) Basic Binary decoder, 4-line to 16 line decoder circuit	10	Revision

	29	b) BCD to decimal decoder, BCD to 7-		
		segment decoder/driver, LED/LCD display		
	30	Revision		
	31	Encoders and Comparators		Verify operation of
		a) Encoder, decimal to BCD encoder,		SISO, PISO, SIPO,
	32	decimal to BCD priority encoder, keyboard		PIPO shift register.
11		encoder	11	(universal shift
	33	b) Magnitude comparators, symbols and logic		register)
		diagrams of 2-bit and 4-bit,		
		c) Comparators		
	34			Study of ring
		Latches and Flip-Flops		counter, Up/down
		a) Latch, SR-latch, D-latch, Flip-flop,		counter
		difference between latch and flip-flop		
12	35	b) S-R, D flip-flop their operation using	12	
		waveform and truth tables, race around		
		condition		
	36	c) JK flip-flop, master slave and their		
		operation using waveform and truth tables		
	37	Revision		Construct and
				verify the operation
				of an asynchronous
	38	Counters		binary decade
12		a) Asynchronous counter, 4-bit Asynchronous	12	counter using
15		counter, Asynchronous decade counter	13	JK flip-flop
	39	b) Asynchronous counter, 4-bit synchronous		
		binary counter, Asynchronous decade counter		
	40	c) Up/down Asynchronous counters, divide		Testing of digital
		by N counter		ICs using IC tester
	41	MOD-3,MOD-5, MOD-7, MOD-12 counters		
14		d) Ring counter, cascaded counter, counter	14	
		applications		
	42	Shift Registers		
		a) Shift registers functions, serial-in-serial		
		out,		
	43	serial-in-parallel-out, parallel-in-serial-out,		Revision
		parallel-in-parallel out		
15	44	b) Universal shift register, shift register	15	
		counter and		
	45	applications of shift registers		