Lesson Plan

Name of Faculty	$:$	Rahul Kaushik
Discipline	$:$	Computer Engg.
Semester	$:$	$3^{\text {rd }}$ Sem
Subject	$:$	Digital Electronics
Lesson Plan Duration	$:$	15 Weeks

Week	Theory		Practical	
	Lecture Day	Topic	$\begin{aligned} & \hline \text { Pr } \\ & \text { Day } \end{aligned}$	Topic
1	1	Introduction a) Define digital and analog signals and systems, difference between analog and digital signals	1	Study of logic breadboard with verification of truth table for AND, OR, NOT, NAND, EXOR, NOR gate
	2	b) Need of digitization and applications of digital systems		
	3	Number Systems a) Decimal, binary, octal, hexadecimal number systems		
2	4	b) Conversion of number from one number system to another including decimal points	2	Verification of NAND and NOR gate as universal gates
	5	c) Binary addition, subtraction, multiplication, division,		
	6	1's and 2's complement method of subtraction d) BCD code numbers and their limitations,		
3	7	addition of BCD coded numbers, conversion of BCD to decimal and vice-versa	3	Construction of half-adder and full adder circuits using EX-OR and NAND gate and verification of their operation
	8	e) Excess-3 code, gray code, binary to gray and gray to binary conversion		
	9	f) Concept of parity, single and double parity, error detection and correction using parity		
4	10 11	Revision	4	Verify the operation of a) multiplexer using an IC
	11	Logic Gates a) Logic gates, positive and negative logic, pulse waveform, definition,		
	12	symbols, truth tables, pulsed operation of NOT, OR, AND, NAND,		
5	13	NOR, EX-OR, EX-NOR gates	5	b)de-multiplexer

